Displacement/deformation method without Sign Conventions.

With this method the construction is divided into members and joints.
The relation between member end forces and member end displacements
deliver equations with the joint displacements as unknowns to be solved.
Member end forces are 'forces and moments', joint displacements are
joint translations and joint rotations.

The examples/exercises are worked out without the computer

For a plane construction a joint can translate/displace horizontally and
vertically, and can rotate. So each joint has three unknows to be solved,
for a construction with N joints N*3 equations have to be solved which
can be done e.g. with the elimnation method of GAUSS. N*3 equations!,
therefore the computer is used, easy solving a lot of equations, page 94
with the concerning computer code.

This method can be applied for statically determinate and indeterminate
constructions, making all kinds of constructions easy to be calculated.

In the following pages the displacement method will be explained step
by step, all without sign conventions. The 'drawn assumptions', forces,
moments and angles, determine the derivation of the equations to be solved.

This way, not disturbed by sign conventions I have been able to write a program

with which the examples are checked, all results ok.
(Part with grids page 81, no program not checked .)

Dear students, I hope having made the displacement method understandeble
by avoiding sign conventions.

Ed van Rotterdam

The Netherlands.
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1. Coineciding axially loaded members.

1.1. The relation between member end forces and
joint displacements.

Fig.l.
The drawn construction consists of two mebers 1

and 2. The member ends are connected with the
joints 1, 2 and 3.

E is the modulus of elasticity, kN/m"2,

A1 and A2 the cross section surfaces, m"2,

EA, E times A is the strain stiffness, EALl for
member 1 and EA2 for member 2, (kN/m"2)* (m"2).
The member lengyhs are L1 and L2.

The assumed direction of the member axes X is
from lowest to highest member end number, here
to the right.

The direction of the construction axis X is
assumed to the right.

Fig.2.

On the member ends of the from the joints sepa-
rated members act member end forces, F12 and
F21, F23 and F32. Their assumed direction is
like the member axis x of the members.

Determining the member stiffness matrix S5.

Fig.3.
The joint displacements UA en UB, being the

member end displacements as well, are assumed
to the right like member axis x.

There are two possibilities to derive the same
relation between member end forces and joint

displacements.

The first possibility.

Is UB larger than UA then the member becomes
longer, AL=UB-UA. The member is a tension mem-
ber. At the member ends act tensile forces same
size like the figure shows.

With Hooke's law follows AL=FL/EA.

(F times L divided by E times A.)

From which follows F=(EA/L)AL.

With member stiffness factor R=EA/L is F=RAL.
With AL=UB-UA is F=R(UB-UA) or F=R (-UA+UB) .

Member end forces FAB and F of member end A are
'the same' forces, thus F=-FAB or FAB=-F.

With FAB=-F follows FAB=-R(-UA+UB) or
FAB=R (UA-UB) . 1)

Member end forces FBA and F of member end B are
'the same' forces, thus F=FBA or FBA=F.
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These two equations show the relation between
member end forces FAB and FBA,

joint displacements UA and UB, by means of
member stiffness factor R=EA/L.
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Fig.4.
The two equations can be represented with
£ = S5*u. In which is

£ the force vector (or force column},

S5 the member stiffness matrix, and
u the displacement vector (column).

An element of £ is equal to a row of S5 multi-
plied by column u.

FAB= S5(1,1)*UA + S$5(1,2)*UB
R*UA -R*UB
FBA= S5(2,1)*UA + 85(2,2)*UB
—-R*UA +R*UB

The member end forces FAB and FBA arise due to
the joint displacements UA and UB.

The second possibility.

Fig.5.

Now displacement UA is larger than displace-
ment UB instead of UB larger than UA.

The member is getting AL=UA-UB shorter, it is a
compression member.

On the member ends act forces F with same size,
the member is in equilibrium.

With Hooke's law follows AL=FL/EA.

from that follows F=(EA/L)AL.

With member stiffness factor R=EA/L is F=RAL.

With AL=UA-UB is F=R (UA=UB) .

Member end forces FAB and F of member end A,
are the 'same forces', F=FAB or FAB=F.
With FAB=F follows FAB=R (UA-UB) 1)

Member end forces FBA and F of member end B are
'‘the same' forces, thus F=-FAB or FBA=-F.

With FBA=-F follows FBA=-R (UA-UB) or

FBA=R (-UA+UB) . 2)

The same equations are found (ofcourse) as for
the tension member of figure 3.

The relation between member end forces and
joint displacements is determined by strain
stiffness EA and member length L, in other
words, by member stiffness factor R=EA/L.

If the construction consists of one single
member then construction stiffness matrix CC is
equal to member stiffness matrix S5.

Fig.6.

If the construction consists of two members
then one gets two times 2 equations as shown on
the left in matrix form. Both systems of two
equations can be composed into one system of
three equations with three unknown displace-
ments UA, UB and UC.

2
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1.2. From member matrices S5 to construction
matrix CC.

Fig.7.

Joints and members are separated from each
other. The on the member ends acting member end
forces are assumed to be directed to the right.

On the joints act the member end forces as
large as but opposite directed, thus to the
left. The member stiffness factors of member 1
and 2 are R1 and R2Z.

On joint A acts, see fig.6,
+0*0C 1)

FAB R1*UA -R1*UB

On Jjoint B acts,

FBA+FBC= -R1*UA +R1*UB +R2*UB —-R2*UC

= —-R1*UA + (R14R2)*UB -R2*UC 2)
On joint C acts,
FCB = 0*UA -R2*UB +R2*UC 3)

This way arise three equations on the left
shown in matrix form,

with force vector f,
construction stiffness matric CC, and
displacement vector u.

Both systems of two equations can be written
out as shown here below, and can be added.

FAB= R1*UA -R1*UB +0*UC 1)
FBA= -R1*UA +R1*UB +0*UC 2")
0 = 0*UAa +0*UB +0*UC 3"
0 = 0*UA +0*UB +0*UC i'")
FBC= 0*UA +R2*UB ~R2*UC 2'"')
FCB= 0*UA -R2*UB +R2*UC o) )
Equation 1') and 1'') added gives equation 1),

see above, etc.

Fig.8.

The joints are loaded with joint load forces
FA, FB and FC, assumption directed to the
right.

On the separated joints act also the to the
left directed member end forces FAB, FBA, FBC
and FCB.

$ hor. joint A= 0

FA-FAB=0 or FAB=FA

% hor. joint B= 0

FB~FBA-FBC =0 or FBA+FBC=FB
% hor. joint C= 0

FC-FCB=0 or FCB=FC

On the left the three egautions are represented
in matrix form.
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Example.

Fig.1l.

The statically indeterminate construction con-
sists of 2 members and 3 joints. Yhe joints are
numbered in arbitrary order. Member 1 with
strain stiffness 3EA, member 2 with 2EA.

The member stiffness factors are

Rl= EAl/L1= 3EA/0,6= 5EA and
R2= EA2/L2= 2EA/0,6= 4EA.

The joint load forces are

Fl= 0 kN, F2= 18 kN and F3= 0 kN.

The joint displacements are Ul, U2 and U3, as—
sumed direction to the right.

Fig.2.

On the left the two equations of the member end
forces of both members are represented in ma-
trix form. If the displacements Ul, U2 and U3
are known then the member end forces F12 and
F21, F23 and F32 can be calculated.

On the separated joints act the joint load for-
ces, assumed to the right, F1=0 kN, F2= 18 kN
and F3= 0 kN.

Like done on the preceding page is here given
the relation between construction matrix CC,
displacement vector u and force vector f in ma-
trix form.

The equations written out are
EA{ 5*Ul -5*U2 +0*U3)= 0
EA(-5*U1 +9*U2 -4*U3)=18
EA( 0*Ul -4*U2 +4*U3)= 0

When the three displacements are unknown the a
solution is not possible, see figure 1. At
least one displacement must be known. Here two
displacements are known, Ul=0 and U3=0.

The equations then become
EA( 1*Ul -0*U2 +0*U3)= 0
EA( 0*Ul +9*U2 -0*U3)=18
EA( 0*Ul -0*U2 +1*U3)= 0O

In the concerning rows and columns of CC come
zeros 0 and on the main diagonal ones 1 given
in matrix form on the left. In the computer
program construction matrix CC is changed this
way while the size of CC does not change, the
number of equations stays the same.

(The equations then are solved with e.g. the
method of GAUSS.)

EA( 0*Ul +9*U2 -0*U3)=18 ox EA(9*U2)=18
from wich follows U2=2/EA in m.

Remark, an element of CC comes from member
stiffness factor 'R=EA/L' with dimension
(kN/m”2) (m"2)/m or kN/m, in the equation then
(KN/m) *U2= kN and follows U2 in m. Thus U2=2/EA
is a number in meters m.

g
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Now that the displacements are known the member
end forces can be calculated.

Fig.3a and 3b.
With the two equations for the first member
follow with Ul=0 and U2=a/EA

F12 =EA( 5*Ul -5*02)
=EA( 5*0 -5*2/EA)= EA(-10*EA)=-10 kN

The answer for F12 is negativ, so that the mem-—
ber end force is not directed to the right as
assumed but to the left. The force does not
press on member end 1 but pulls at end 1.

F21 =EA(-5*Ul1 +5*U2)
=FEA(-5*0 +5%*2/EA)= EA(10/EA)= 10 kN

A positive answer, so that the member end force
at member end 2 is as assumed directed to the
right, pulls at member end 2.

Member 1 is a tension member. The elongation of
the member is AL=10*0,6/3EA = 2/EA.

Fig.4a en 4b.

Similar way for member 2 with its member end
displacements, being the joint displacements
U2=2/EA and U3=0.

F23 =EA(4*U2 —-4*U3)
=EA (4*2/EA—4*0)= BA(S8/EA)= 8 kN

A positiv answer, F23 is as assumed directed to
the right. The force presses on member end 2.

F32 =EA(-4*U2+4*U3)
—FA (-4%2/EA+4*0)=EA (-8/EA)= -8 kN

A negative answer so not as assumed to the
right but to the left. The force pushes on mem-
ber end 3. Member 2 is a compression member.
The member shortens AL= 8*0,5/2EA= 2/ER.

Fig.5.
The normal force diagram

Fig.6.

The separated joints. On the joints act member
end forces as large as but opposite directed to
those of fig. 3b and 4b.

The assumption for the reaction forces at the
clamps 1 and 3 is to the right, RH1 and RH3.

% hor. joint 1 =0
RH1+10=0 = RH1=-10 kN.
% hor. joint 3 =0

RH3+8=0 = RH3= -8 kN.

A negativ answer for bot reactions, thus not as
assumed directed to the right but to the left.
The joint 2 is in equilibrium, 18-10-8= 0.

Voor beide reacties een negatief antwoord, dus

Fig.7.
The construction is in equilibrium.
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The same construction but with other joint num-—
bering. So now Ul=0 and U2=0. The member numbe-—
ring is the same, with R1=5EA and R2=4EA.

The joilnt losd forces are

Fl= 0 kN, F2= 0 kN and F3= 18 kN.

The earlier found relation between member end
forces and displacements can be represented as
follows with L as lowest member end number and
H as highest member end number.

FLH= R -R UL FLH= EA( 5*UL -5*UH)
=R £l
FHi= -R R UH FHL= EA(-5*UL 5*UH)
Fig.9.

The separated members and joints. The member
end forces are drawn with the assumed directi-
ons from left to right. On the separated joints
act member end forces as large as but opposite
directed.

F13  =EA( 5*Ul+  -5*%U3)
F23  =EA( 4*U2-4*U3)
F314+F32=EA (-5*U1+0*U2+45%U3 +0*ULl-4*U2+4*U3)

=EA (-5*U1-4*U2+3*U3)

Fl2 5 0 -5 Ul
F23 =EA 0 4 -4 «| U2
F31+F32 -5 -4 9 u3

£ cc u

Matrix CC is symmetric with respect to the main
diagonal, left to to right bottom. Member ma-
trices 85 are symmetric as well.

¥ hor. joint 3 =0

F31+F32-18=0 or F31+F32=18 kN

See CC * u = f shown on the left.

Ul=0 and U2=0, rows and columns 1 and 2 are
filled with zeros but on the main diagonal a 1
for CC(1,1)=0 and CC(2,2)=0. See the second
relation CC * u = £f. There is one equation left

to solve 0*Ul +0%U2 +9*U3 =18 so that

EA*9*U3=18 from which
found on page %

U3=2/ERA 1like was

Calculation of the member end forces..

Fig.10.

Member 1.

F13=EA( 5*0-5*2/EA) F13=-10 kN
F31=EA (-5*0+5*2/EA) F31l= 10 kN
Member 2.

F23=EA( 4*0-4*2/ER) F23= -8 kN
F32=FEA(-4*0+4*2/EA) F32= 8 kN

The member end forces are drawn with their real
directions. Same result as for the same con-
struction as on the precedin page.

6
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1.3. Joint load forces and hold forces.

Fig.1l.

The construction consists of two members and
three joints. In unloaded state the joints A, B
and C are hold with the 'hold forces' FHA, FHB
and FHC. Assumed directions to the left.

Next the joint load forces FA, FB and FC are
applied, assumed directions to the right, and
the member load forces assumed to the right.

Fig.2.

If the joints are let loose then there are no
'hold forces'any more. The members deform and
the joints displace due to the joint load for-
ces. At the member end arise member end forces,
assumed direction to the right. On the joints
act forces as large as but opposite directed,
thus to tghe left.

Fig.3.

If there are only joint load forces then the
force vector £ is filled with them as shown on
page 6%45. Next the unknown joint displacements
are calculated.

Fig.4.

After that the influence of the member load
forces. One more time holding the joints in
unloaded state, applying the loads and letting
loose the joints. At the member ends arise mem-—
ber end forces, assumed direction to the left,
acting on the joints as large as but opposite
directed, thus to the right, FPAB, FBPA, FPBC
and FPCB.

These forces are called primary forces, forces
due to member load forcse and are calculated as
the reactions of member clamped at both ends.

Fig.b5.

The drawing shows the member end forces FAB,
FBA, FBC and FCB being the forces due to joint
load forces and member load forces.

The elements of force vecor f follow again from
equilibrium of the joints.

In the drawing the member end forces now are
FAB, FBA, FBC and FCB the forces due to the
joint load forces and the member load forces.
The elements of force vector f follow with
equilibrium of the joints.

% hor. joint A =0
FA+FPBA-FAB=0 = FABR=FA+FPBA

¥ hor. joint B =0
FB+FPRA+FPBC-FBA-FBC=0 => FBA+FBC=FB+FPBA+FPBC

% hor. joint C =0
FC+FPCB-FCB=0 = FCB=FC+FPCB

This way force vecor f£ is filled with the joint
load forces and the primary forces due to the
member load forces.

Remark.

The assumed directions of the forces, to the
left or to the right, is arbitrary. If chosen
the given way then when programming consequent-
ly applied. But, one more time, the choice of
direction is arbitrary, no prescribed way!

;Z
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Fig.1.

The construction consists of two members 1 and
2 and three joints 1, 2 and 3.

The member stiffness factors are
R1=FA1/L1=12EA/4=3EA and
R2=EA2/L2=10EA/5=2EA.

The joint load forces are

F1=0 kN, F2=-11 kN and F3=0 kN.

Member 2 is loaded with a uniformly distributed
load of 4 kN/m along the member axis, to the
right. The reactions of the on both ends holded
member are (5*4)/2=10 kN. They are directed to
the left. On the joints act forces as large as
but opposite directed, to the right like the
assumed direction of the primary forces

FP23=10 kN and FP32=10 kN.

Fig.2 en 3.
The elements of force vecor £ follow with

> hor. = 0 of the joints..

2 hor. joint 1 =0
F1-F12=0 = F12=F1=0 kn

2 hor. joint 2 2 = 0
F2+FP23-F21-F23=0
= F21+F32=F2+FP23=-11+10=-1 kN

2 hor. joint 3 =0
F3+FP32-F32=0 = F32=F3+FP32=0+10=10 kN

Fig.3.

The displacement of joint 1 is prescribed, is
known, Ul=0. Then first row and first column of
construction matrix CC are filled with zeros
except the element on the main diagonal, beco-—
ming CC(1l,1)=1. See page

The first element of force vector f is zero be-
cause Fl=0. Multiplication of the first row of
CC by vector u gives 1*Ul+0*U2+0*U3=0, and is
Ul=0.

Since Ul=0 the first equation falls off. Two
equations remain with two equations with the
unknown joint displacements U2 and U3.

EA( 5*U2-2*U3)= -1 2)
EA (-2*U2+2*U3)= 10 + 3)
EA( 3*U2) = 9 so that U2=3/EA.

With equation 2 then follows
EA(5*3-2*U3)=-1 or EA(-2*U3)=-16
so that U3=8/EA.

The answers of U2 and U3 are positive, the
joints then displace to the right as assumed.
Next the member end forces Fl12, F21, F23 and
¥F32 can be calculated. Next page.

The construction of figure 1 is statically de-
terminated. The reaction at clamp 1 then is
simple to be calculated. Suppose reaction RHI
is assumed to the right then follows with

¥ hor. = 0 RH1-11+4*5=0 so that RH1= -9 kN,
not as assumed to the right but to the left.

1o
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1.4. Calculation of the member end forces.

Fig.4a.

With Ul=0/EA and U2=3/EA follow the member
end forces with 'row times column' for
member 1

F12=EA{ 3*0/EA-3*3/EA)= -9 kN, and
F21=EA(-3*0/EA+3*3/EA)= 9 kN.

These are member ned forces due to the displa-
cements alone! Since member 1 has no member
load forces are F12= -9 kN and F21= 9 kN the
final member end forces.

Fig.4b.

The member end forces how they rally act at the
member ends.

A negative answer for F12 so not directed as
assumed to the right but to the left, and a po-
sitive answer for F21 so assumed directed to
the right.

Fig.ba.
Member 2 with U2=3/EA and U3=8/EA.

F23=EA( 2*3/EA-2*8/EA)=-10 kN, and
F32=EA(-2*3/EA+2*8/EA)= 10 KkN.

These are member end forces due to the displa-
cements alone!

Fig.5b.
The member end forces how they really act at
the member ends, drawn with their real direc-
tions.

Fig.5c.

The to the left directed hold forces due to the
meber load forces alone, of the at both ends
clamped member.

Fig.5d.

The final member end forces as addition of
fig.5b due to joint displacements alone, and
fig.5c due to member loads alone.

At member end 2 a force of 20 kN pulling at the
member end and at member end 3 a force 0 kN.

Fig.6.
The normal force diagram, both members ension
members.

Fig.7.

With the now known joint displacements the
elements of force vecor f can be calculated
with the unchanged construction matrix CC.
These are the socalled joint forces KI, K2 and
K3 due to the joint displacements alone! with
assumed direction to the left.

'EA' skipped over for a while,

K1=F12 = 3*%Q -3*3 +0*0= 0 -9 +0= -9 kN
K2=F21+F23=-3*0 +5*3 -2*8= (0+15-16= -1 kN

K3=F32 = 0*0 -2*3 +2*8= 0 -6+16= 10 kN



-

P2, . 2% 4
A 7 3 3 ¥
&A 154 2&A
o, 9m a6 ) qé_+
Fig.1l.
member 1 1 2
1 Fl2 167 -167 Ul
2 | F21 ) -167 167 . U2
x EA/100
menmber 2 2 3
2 F23 250 —250_ U2_
3 F32 ) -250 250 ' U3
member 3 3 4
3 F34 333 —333‘ U3
4 F43 } -333 333J‘ U4
1 2 3 4
i i 167 -167 i i ] “017 f O_
2 -167 417 -250 U2 -9
3 ~-250 583 -333 . U3 ) 9
4 -333 333 U4 0
- x EA/100 cc S o
1 2 3 4
il N 1 0 0 0 | _Ul_ i Oﬁ
2 0 417 -250 0 U2 -9
3 0 -250 583 0 ‘ U3 ) 9
4 0 0 0 1 U4 0
B x EA/100 . o
Fl12 | i 167 -167 0 0 i —Ul_
F21+F23 -167 417 -250 0 U2
F34+F43 ) 0 -250 583 —-333 . U3
F43 0 0 -333 333 U4
£ - cc . _2_

Example.

Fig.1.

The construction consists of three members and
four joints, reqularly numbered.

Length L1, L2 and L3 is 0,6 m, strain stiff-
nesses EAl= 1,0EA EA2=1,5EA and EA3=2,0EA.

The joint load forces are

F2= -9 kN, directed to the left and
F3= 9 KN, directed to the right.
The member stiffness factors are
R1l= EAl/Ll1= 1,0EA/0,6= 1,67 EA,

R2= EA2/L2= 1,5EA/0,6= 2,50 EA and
R3= EA3/L3= 2,0EA/0,6= 3,33 EA.

on the left the relation £ = 55 * u of the
three members is shown. Written out they are
three times two equations with matching two
unknown displacements, Ul and UZ, U2 and U3,
and U3 and U4.

Put together it gives four equations with the
four unknowns shown on the left in matrix form,
f=20CcC * u.

With horizontal equilibrium of joint 2 and 3,
see page & , follow the values of the force
vector -9 kN and 9 kN.

Since the displacements of joint 1 and 4 are
prescribed, are known, Ul=0 and U4=0, there are
two equations left with the unknowns U3 and U4.
EA( 4,17*U2-2,50*0U3= -9,00 2)
EA(-2,50*U2+45,83*U3= 9,00 3)

2) times 2,50/4,17 gives

EA( 2,50*U2-1,50*U3= -5,40 2') 3)+2") gives
4,33*U3= 3,60 thus U3= 0,83/EA

next U2=-1,66/EA with eq. 2), 3) of 2').
After that with the equations for each member
the member end forces are calculated.

Fl2= 2,77 kN F23=-6,23 kN F34= 2,76 kN
F21=-2,77 kN F32= 6,23 kN F43=-2,76 kN

1 2 _ 277
2z7 /
b
2,77 £23
¥ , 3_&23
4,23 2
3
&,23 276
= J é——
2,7 3 278
Fig.2. 4_,76 _J,JE

Above the on the joints and member ends acting
force are drawn with their real directions, and
the joint load forces.

With £ hor.= 0 for the joints 1 and 4 follow
the reactions.

/0
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2 hor. joint 2=0
F21+F23+VK2-9=0 of

Member 1

/79.3.

so that

F214F23+VK2= 9

F21= EA(-167*Ul +167*02) /100

Member 2

F23= EA{ 250*U2 -250%U03) /100

VK2= EA( 130*U2)/100

s2=1, 3EA

F21+F23+VK2= EA(-167*U1+547*02-250*U3)

1 2 3 4
1 1 0 0 0 Ul 0
2 0 547 -250 0 U2 -9
3 0 -250 583 0 U3 9
4 0 0 0 1 U4 0
. —3 ES = — =
X EA/100
/, s =
4162 ——pm
00
g -2
— e —— e~
7,45 8,53
Fig.4.
1 2 3 4
1 1 0 0 0 Ul 0
2 0 547 -250 0 U2 -9
3 0 -250 673 0 U3 9
4 0 0 0 1 u4 0
x EA/100
/6,
A oz®
9,00 8,09
S — e i
2,09 373/ 3,37 2,90
Fig.5.

Fig.3.
Joint 2 is springy supported, see page /4.
The spring constant is 82= 1,3EA kN/m.

If the spring is stretched with distance U2
with assumed direction to the right then the
joint pulls at the spring with a force VK2 di-
rected to the right. The spring pulls at the
joint with a force as large as but opposite to
the left directed force VK2.

The on the joint acting member end forces F21
and F23 are directed to the left as well be-
cause acting on the member ends as assumed di-
rected to the right. further there is a Jjoint
load force of 9 kN.

With horizontal equilibrium of joint 2 and the
written out equations of F21 and F23 follows
(417+130) *U2= 547*U2.

The spring constant is added to the concerning
element of construction matrix CC like shown
here below.

F12 1 [ 167 -167 0 o | [u1]
F21+F23+VK2 -167 547 -250 O U2
F32+F34 “| o0 -250 583 -333| | U3

L§43 0 0 -333 333| U4

£ X EA/100 cCC o E-

Like on the preceding page the unknown displa-
cements U2 and U3 remain to be solved with

EA( 5,47*U2-2,50*U3= -9 and
EA(-2,50%U2+5,83*U3= 9 from which follow
U2=-1,17/EA and U3= 1,04/EA.

And with them finally the member end forces
Fl2= 1,95 kN F23=-5,53 kN F34= 3,46 kN
F21=-1,95 kN F32= 5,53 kN F43=-3,46 kN
Z hor. joint 2=0 F21+F23+VK2+9=0 or
F21+F234+VK2= -9

F21+F23+VK2= EA((5,47*(—1,17/EA)-2,50*1,04/EA)

= -6,40-2,60= -9 kN as expected.
-1,95-5,53+VK2=-9,00 so that VK2=-1,52 kN.
A negative answer, so not directed to the left
on the joint as assumed but to the right.
Also is VK2= S2 * U2 =

= 1,3*EA*(-1,17/EA)=-1,52 kN

Fig.4.
The forces like they act at joint 2 drawn with
their real directions.
% hor. joint 2=0 ? 9,00-1,95-5,53-1,52=0 OK
Fig.5.
Suppose joint 3 is springy supported as well,
S3= 0, 9EA kN/m. Then the concerning diagonal
element of CC becomes 583+90=673 =x EA/100.
Calculation gives U2=-1,25/EA and U3=0,87/ER.
VK2=-1,63 kN
VK3= 0,78 kN

F21= 2,09 kN
F32= 5,31 kN

F23= 5,31 kN
F34= 2,90 kN

1/
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Example.

Fig.1l.
The stiffness factor of members 1 to 4.
R1l= 2EA/0,4= 5EA, R2=4EA/0, 5= BEA,

R3=0, 6EA/0,3= 2FEA and R4=2EA/0,5= 4EA.
(To simplify, 'EA' now and then omitted.)

The primary forces due to the uniformly distri-
buted loads.

Fig.2.

Member 1 with 12kN/m directed to the left.

The reactions of the at both ends clamped mem-
ber are directed to the left,

(12*0,4) /2=2,4 KkN.

Member 4 with 18 kN/m directed to the right.
Clamped like member 1 are the reactions
directed to the right, member ends 2 and 3,
(18*0,5) /2=4,5 kN.

On the separated joints act forces as large as
but opposite directed, 2,4 kN to the left and
4,5 kN to the right.

The on the separated joints acting primary for-
ces are assumed to the right so that, page ;f £
FP12=-2,4 kN and FP21=-2,4 kN,

FP45= 4,5 kN and FP54= 4,5 kN.

Construction matrix CC is composed with member

stiffness matrices S5. The member end numbers

determine the place where the concerning ele-

ments of S5 arrive in CC. Below S5 of member 2.
2 3

2 [ 8 —8:| F23= EA( 8*U2 —-8*U3)

3 8 8 F32=-EA(-8*U2 +8*U3)

Fig.3.

The elements of force vector f.

1) F12+2,4=0 or Fl2= -2,4 kN
2) F21+F23+2,4-15=0 or  F21+F23= 12,6 kN
3) F32+F34=0 or F32+F34= 0 kN
4) FA43+FA5+24-4,5=0 or  F43+F45=-19,5 kN
5) F54-4,5=0 or F54= 4,5 kN

With the prescribed displacements Ul=0 and U5=0
follows the second construction matrix CC,
equation 1) and 5) are of no use, remain

2) EA(13*U2 -8*U3 y= 12,6
3) EA(-8*U2 +10*U3 -2*U4)= 0
4) EA( -2*U3 +6*U4)=-19,5

The three equations solved give
U2= 1,14/EA, U3= 0,28/EA, Uid= -3,16/EA.

Fig.4.

Joint 2 in equilibrium? For the members 1 and 2
the member end forces due to the displacements
alone are

F12=FEA( 5*Ul-5*U2)=EA(5*0~-5%*1,14/EA)= -5,7 kN
F21=EA (-5*U1+5*U2)= 5,7 kN

F23=EA( 8*U2-8*U3)=EA(8*1,14/EA-8*0,28/EA)
=9,1-2,2= 6,9 kN
F32=EA(-8*U2+8*U3)= -6,9 kN

Due to member loads alone 2,4 kN to be added.

On the left forces acting on member ends and
joints drawn with their real directions.

12
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Fig.5.
The same example with the same member numbering
1 to 5 from left to right. An arbitrary joint
numbering, 4 5 1 2 3 from left to right.
Stiffness factors again
R1=5EA, R2=8EA, R3=2EA
(To simplify 'EA' now and

and R4=4EA.
then omitted.)

The primary forces due to the member loads.
Fig.6.

Member 1 with primary forces
ends 4 and 5 directed to the
Member 4 with primary forces
ends 2 and 3 directed to the

2,4 kKN on member
right.
4,5 kN on member
left.

On the separated joints act forces as large as

but opposite directed, 2,4 kN to the left on
the joints 4 and 5, and 4,5 kN to the right on
the joints 2 and 3.

The on the joints acting primary forces due to
the member loads are assumed to the right so
that, see page ;Z , note the member end num-
bering,
FP45=-2,4 kN
FP23= 4,5 kN

and
and

FP54=-2,4 kN,
FP32=

Construction matrix CC is composed with the
menmber stiffness matrices S5. Here below S5 of

member 2 with member end numbers 1 and 5.

1 5
1 8 -8 F15= EA{ 8*Ul -8*U3)
51{-8 8 F51=-EA(-8*Ul +8*US)
Fig.7.
The elements of force vector f.
1) F15+F12=0 or F15+F12= 0 kN
2) F214F23+24-4,5=0 or F21+F23= -19,5 kN
3) F32-4,5=0 or F32= 4,5 kN
4) F45+2,4=0 or F45= -2,4 kN

5) F54+F51+2,4-15=0 or F54+4F51= 12,6 kN

With the prescribed displacements U4=0 and U3=0
follows the second matrix CC, equation 3) and

4) are of no use, are omitted, remain
1) EA(10*Ul-2*U0U2 -8*U5)= 0

2) EA(-2*Ul+6*02 y= -19,5

5) EA(-8*Ul1 +13*US)= 12,6

The equations solved (with computer Gauss) give
ul= 0,28/EA, U2= -3,16/EA, U5= 1,14/EA.
Fig.8.

Is joint 5 in equilibrium? For the members 1
and 2 follow the member end forces

F45=EA( 5*U4-5*U5)=EA(5*0-5*1,14/EA)= -5,7 kN
F54=EA{-5*U4+5*U5)= 5,7 kN

F15=FA( 8*U1-8*U5)=EA(8*0,28/EA-8*1, 14/EA)
=(2,2-9,1)= -6,9 kN
F51=FEA(-8*U1l+8*U5)= 6,9 kN

Joint 5 is in equilibrium.

The directions of the member end forces is as-—
sumed to the right regardless, ofcourse, the
order of the member end numbering.The on the
joint acting primary fores are assumed to the
right as well.

/3



A 8 J
(- | g |
. A N> ‘
“A
At
VA VA
7 T A
Fip. 1c2.

A B
L ———i]
- /
+—t
Ll Vi A
A r Vi

A ras ra4y T ree
-— —
VKA VS
FAB+VKA
FBA+FBC+VKB | =
FCB
£
R1+SA -R1 uA
-R1 R1+R2+SB -R2 |. | UB
-R2 R2 uc

cC

1=

Fip_16.

1.5. The springy support.

Fig.la.

Joint A is horizontally supported by a spring.
The spring drawn here causes joint A to displa-
ce ovewr UA to the right, the assumed direction
for joint displacements. The spring is stretch-
ed out. The separated spring is in equilibrium,
see the two forces VKA acting at the spring
ends.

At the separated spring A itself acts a force
VKA as large as but opposite directed, so di-
rected to the left.
With spring constant SA in kN/m follows spring
force VKA= SA*UA KkN.

Fig.1lb.

In the represented case here the spring is
pushed in by the assumed joint displacement UA
to the right. The spring is pushed in by the
forces VKA. On the separated joint A itself
acts the spring force VKA as large as but oppo-
site directed, so directed to the left.

So that in both schematic represented cases la
and 1b with the assumed joint displacement UA
to the right the spring force VKA acting on the
separated joint is directed to the left.

Fig.2.

With the assumed spring supports of the joints
A and B with spring constants SA and SB act on
the separated joints A and B spring forces
VKA=SA*UA and VKB=SB*UB directed to the left
due to the assumed joint displacements UA and
UB to the right.

The member end forces assumed directed to the
right act on the joints as large as but oppos-
ite directed.

Force vector f consists of (see page 3 ) the
unknown to be calculated forces FAB and VKA,
FBA, FBC and VKB, and FCB.

FBA= R2*UB -R2*UC
FBC=-R2*UB +R2*UC

FAB= R1*UA -R1*UB
FBA= -R1*UA +R1*UB

FAB+VKA = RI1*UA+SA*UA -R1*UB
(R1+SA) *UA -R1*UB

FBA+FBC+VKB= —-R1*UA +R1*UB
+R2*UB+SB*UB -R2*UC

= -R1*UA +(R1+R2+SB) *UB
FCB = —-R2*UB +R2*UC

all together represented on the left in matrix
form. The spring constants SA and SB are added
to the concerning elements on the main diagonal
of the construction matrix CC.

The spring constants SA and SB have the same
dimension like the stiffness factors R1=EAl/Ll
and R2=EA2/L2.

R2=EA2/L2.

'‘R=EA/L' with (kN/m*2) (m"2)/m or kN/m and
SA and SB in kN/m.

/4



X/8)

) A ~h

VA

2. Plane trusses of which the joints are regar—

ded as hinges

2.1. The ralation between member end forces and
member end displacements, being the joint dis-

placements.

Fig.la.

Assumptions.

Yhe X-Y axis system (capitals) is the construc-
tion axis system. Starting point is the drawn
member AB.

The horizontal displacement UHI of joint I is
assumed to the right like the X axis, the ver-
tical displacement UV1 upward like the Y axis
(not because it should be like that).

On the joint act horizontal joint load forces
FX1 assumed to the right and vertical joint
load forces FYl1 assumed upward.

(The vertical joint load forces are mostly di-
rected downward, could have been assumed also.)

Tt is assumed that the coordinates X1(B) and

Y1 (B) of member end B are larger than X1(A) and
Y1 (A) of member end A. Then the triangle
lengths are

D1=X1(B)-X1(A) and D2=Y1(B)-Y1(A),
and member lengyh Ll=Sqr (D1"°2+D2"2).

Further are Sin(h)=D2/L1 or S=D2/L1 and
Cos (h)=D1/1L1 or C=D1/L1.

Fig. 1b en lc.

The displacements UAX and UAY of the member
ends are assumed to the right, UAY and UBY up-
ward.

The member itself has an own member axis system
x-y of which the origin is assumed at member
end A. The x axis is directed from A to B, the
y axis perpendicular to AB like drawn.

(Later the joints and thus also the member ends
are numbered. Then A represents the lowest
member end number L and B the highest member
end number H. The member axis system itself
then is always placed at the lowest member end
number L.)

If one assumes that displacement UBx of member
end B is larger than UAx of member end A then

the member gets AL longer.

Since the displacements UAy and UBy perpendi-
cular to the member axis are small with respect
to member length L one can write

AL= UBx - UAx.

Fig.2a.

The displacements UAx and UAy w.r.t. the member
axis system x-y will be expressed in the dis-
placements UAX and UAY w.r.t. the construction
axis system X-Y.

Because the member end forces in X and Y direc-
tion will be expressed in the displaments
w.r.t. the construction axis system X-Y by
means of member stiffness matrix S5.
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The displacements UAx and UAy of member end A.

Fig. 2a and 2b.

The like vectors drawn displacements UAX and
UAY are rseolved into a displacement along and
a displacement perpendicular to the member axis

The component of UAX alog the member axis x is
Cos (h) *UAX, or C*UAX with C=Cos(h), and

the component of UAY along the member axis is
Sin(h) *UAY, or S*UAX with S8=Sin(h).

Then the displacement UAx (small x, not X),
fig.2a, along the x—axis is

UAx= C*UAX + S*UAY.

Perpendicular to axis x are the components

Sin (h) *UAX or S*UAX, and

Cos (h) *UAY or C*UAY.

Taking intc account the directions of the com-
ponents follows for displacement UAY according
to member axis y

UAy= C*UAY - S*UAX or, other order,

UAy= -S*UAX + C*UAY.

The displacements UBx and UBy of member end B.

Fig. 3a en 3b.
Like done for member end A follow

UBx= C*UBX + S*UBY, and

UBy= —S*UBX + C*UBY.

Next the relation between member end forces
w.r.t. member anxis system x-y, and the member
end dispacements w.r.t. construction axis
system X-Y.

Fig.4.

The member gets AL= UBx-UAx longer, the member
is a tension member. Then act on the member
ends tensile forces of F kN.

With Hooke's law is AL=FL/EA or F=(EA/L)*AL.
The member stiffness factor R=(EA/L). Then is

F= R* (UBx-URx) or F= R(-UAx+UBX).

The assumed direction of the member end forces
FABx and FBAX is the same like for the displa-
cements UAx and UBx, like the x axis.

Both member end forces FABx and F at A, and
both member end forces FBAx and F at B, are
equal, see also page / , then follows
FABx=-F so that FABx= R( UAx-UBx), and
FBAX= F so that FBAx= R(-UAx+UBX).

If the earlier found UAx and UAy are put in in
both equations, follow

FABx= R( (C*UAX+S*UAY)- (C*UBX+S*UBY)) and

FBAx= R (- (C*UAX+S*UAY)+ (C*UBX+S*UBY) ) .

/6
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R*C"2 R*S*C | -R*C"2 -R*3*C

R*5*C R*872 | -R*S*C -R*S"2

-R*¥C"*2 ~R*S*C R*C"2 R*S$*C

-R*S*C -R*S"2 R*S*C R*S§"2

S5
stiffness factor R=EA/L in kN/m.
Matrix S5 has three values, three dif-
ferent elements, with a + or a minus -
sign.
+/-  R*C"2, R*S*C, R*$*2  with

C=Cos{h) en S=Sin(h).

i (=] [=]e] -0 —00 ]
[=]e] [olle] =00 —000
-0 =00 (o] [ele]
| =00 -Q00 [ole] Q00

The four sub matrices are symmetric as
well w.r.t. the main diagonal.

Fig.5.

The assumption for the directions of the hori-
zontal member end forces FABX and FBAX is cho-
sen like for the horizotal displacements UAX
and UBX to the right, and the assumption for
the direction of the vertical member end forces
FABY and FBAY is like for the vertical displa-
cements UAY and UBY upward. These member end
forces are the components of FABx and FBAX.

Cos (h)=FABX/FABx so that FABX=FABx*Cos (H)
Sin (h)=FABY/FABx FABU=FABx*Sin (h)
Cos (H) =FBAX/FBAx so that FBAX=FBAx*Cos (h)

Sin (h)=FBAY/FBAX FBAY=FBAx*Sin (h)

With C=Cos(h) and S=Sin(h) then follow
at A TFABX=FABx*C 1) and FABY=FABx*S 2) and

at B FBAX=FBAx*C 3) and FBAY=FBAxX*S 4).

The equations for the in accordance with the x
axis acting member end forces FABx and FBAx,
expressed in the member end displacements
w.r.t. the construction axis system X-Y, UAX
and UBX, UBX and UBY, were found on the prece-
ding page,

FABx= R( (C*UAX+S*UAY)- (C*UBX+S*UBY)) and

FBAxX= R (- (C*UAX+S*UAY)+ (C*UBX+S*UBY)) .

If they are put in the equations of the hori-
zontal and vertical member end forces, FABX and
FABY, FBAX and FBAY, then follow

FABX= R( C*C*UAX +8*C*UAY -C*C*UBX -S*C*UBY) 1)
FABY= R( S*C*YAX +S*S*UAY -S*C*UBX -S*S*UBY) 2)
FBAX= R(-C*C*UAX -S*C*UBY +C*C*UBX +S*C*UBY) 3)
FBAY= R(-8*C*UAX -S*S*UAY +S*C*UBX +S*S*UBY) 4)

and written in matrix form

_F%Biw R R*C*C R*S*C —-R*C*C —R*S*é? _UA);1
FABY R*S*C R*S*S —-R*S*C —-R*S*S URAY
FBAX ) -R*C*C —-R*S*C R*C*C R*S*C ’ UBX
FBAY -R*S*C —-R*S*S R*S*C R*S*S UBY

L . _ L B =3 = E__

£ 1is the force vector,
S5 is the member stiffness matrix, and
u is the displacement vector.

Matrix S5 is symmetric w.r.t. the main diagonal
from left top to right bottom.

/7
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Here above member 1 with member end
forces and member end displacements
with their assumed directions. Here Dbe-
low their written out equations.
F13X= 90UH1 -150UV1 -90UH3 +150U0V3
F13Y=-150UH1 +2510UV1 +150UH3 -251UV3
F31X= -90UH1 +150UV1 +S0UH3 -150UV3

F31Y= 150UH1 -251UvV1 -150UH3 +251U0V3

kKN = kN/m times m.

Example.

Fog.l.

Assumptions.

Lowest member end number L instead of letter A
with coordinates X1(L) and Y1(L) and

highest member end number H instead of letter B
with coordinates X1(H) and Y1(H).

D1=X1(H)-X1(L) and D2=Y1(H)-Y1(L).

For D1 and D2, the coordinaat with the highest
member end number H minus the coordinate with
the lowest member end number L.

Member length is Sqr(D172+D2"2).

Fig.2.

Member 1 and member 2 with strain stiffness EA.
X1(1)= 0 X1(2)= 3,0 X1(3)= 1,5 m
Yi(1)= 2,5 Y1i(2)= 2,0 Y1(3)= 0 m

The member stiffness matrix of member 1.

Fig.2 en 3.

Member end numbers H=3 and L=1.
D1=X1(3)-X1(1)= 1,5-0 = 1,5 Di1= 1,5
D2=Y1(3)-Y1(1)= 0 =-2,5=-2,5 D2=-2,5

11= Sqr((l,5)~2+(-2,5)"2)=Sqr(8,50)= 2,92 m
Stiffness factor Rl= 'EA/L'= EA/2,92= 0,342 EA.

Modulus of elasticity E,

E=210*%10~3 N/mm"2 = 210 kN/mm2 =210*10"6 kN/m"2
Member cross section A in m”2 then follows

FA is E times A, with E in kN/m"2 and A in m"2,
so that EA in kN.

R1='FA/L' in kN/m, then the elements of S5 are
with C and S, in kN/m if the values of E in
kN/m~2 and A in m"2 are brought in the calcu-
lation.

Cos(h) is C= D1/L1= 1,5/2,92= 0,514
Sin(h) is 8= D2/Ll= -2,5/2,92= -0,856

Next the three combinations of Rl, C en S.

R1*C~2= 0,342*(0,514)"2 = 0,090 EA
R1*S*C= 0,342*(-0,856)*0,514= -0,150 EA
R1*§72= 0,342*(-0,856)"2 = 0,251 EA

For the sake of convenience elements of S5 are
multiplied by 1000 and divided by EA. Then fol-
lows £ = 85 * u like found on the preceding

page.

_F13X_ r 90 -150 -90 150— ﬂUHl
F13Y -150 251 150 -251 uvl
F31X ) -90 150 90 -150 ' UH3
F31Y 150 -251 | -150 251 UV3J

B ) - x EA/1000 -

/8
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F32X _ /A
F3ay

Fig. 4

F23X= 144UH2 +1920V2 -144UH3 -192UV3
F23Y= 192UH2 +256UV2 -192UH3 -256UV3
F32X=-144UH2 -192UV2 +144UH3 +192UV3

F32Y=-192UH2 -256UV2 +192UH3 +256UV3

The member stiffness matrix of member 2.

Fig. 2 en 4.

Member end numbers H=3 and L=2.
D1=X1(3)-%X1(2)= 1,5-3,0=-1,5
D2=Y1(3)-Y1(2)= 0 -2,0=-2,0

D1=-1,5 m
D2=-2,0 m

Ll=Sqr((-1,5)"2+(-2,5)"2)=8qr(6,25)= 2,50 m

Stiffness factor R2= 'EA/L'= EA/2,

C=D1/L1= -1,5/2,50= -0,600
S=p2/Ll= -2,0/2,50= -0,800

50= 0,400 EA.

F13X 90 -150 . . -90 150
F13Y -150 251 150 -251
F31X -90 150 . " 90 -150
F31Y 150 -251 . . -150 251

Both member stiffness matrices are com-
bined to the construction stiffness ma-
trix CC like shown here.

See also page /O .

l FI3y

F/3x Y , 23y

: Y F23x
O W———-

)iiz)/I l/ﬁséﬁy

F3rx 11 Fagy

———

’l
P Ly };9_51

On the joints act member end forces as
large as but opposite directed. The e-
quilibrium of the joints deliver the
elements ofi £, see on the right, all
zero except the last element,

¥ vert. joint 3=0 F31Y+F32Y+8=0 so
that F31Y+F32Y= -8 kN.

R2*C 2= 0,400* (-0, 600) ~2 0,144 EA
R2*S*C= 0, 400* (-0,800) * (-0,600)= 0,192 EA
R2*S~2= 0, 400* (-0, 800) ~2 = 0,256 EA
(f23x | [ 144 192 |-144 -192 | [omz |
F23Y 192 256 |-192 -256 uv2
p3ox | | -144 -102 | 144 192 | vms
F32Y -192 -256 | 192 256 uv3
- x EA/1000 S
] .| [om |
. . . . . . uvl
F23X . ) 144 192 -144 -192 | | UH2
23| | . 192 256 -192 -256 | | uv2
F32X -144 -192 144 192 | | UH3
F32Y . . —-192 -256 192 256 | |UV3
| F13x 1 [ 90 -150 . : 90 -150 |
F13Y -150 251 . . 150 -251
F23X . . 144 192 -144 -192
F23Y | . . 192 256 -192 -256
F31X+F32X ~90 150 -144 -192 234 42
F31Y+F32Y 150 -251 -192 -256 42 507
L 4 L . '
90 -150 90 ~150 | Jum| [ of
-150 251 150 -251 | |Uvi 0
. 144 192 -144 -192 | |UH2 | =| O
; ; 192 256 -192 -256 | | UV2 0
-90 150 -144 -192 234 _42 | | UH3 0
150 —251 -192 -256 42 507 | | UV3 -8
L . 4L \ 14 L ;ﬁ

These are the equations in matrix form which

have to be solved.
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Fig.é6a. Fig.6b.

See the equations of the member end
forces of member 1, page .

With UH1=0 and UV1=0 1is, without EA,
F13X=-0,090*UH3 +0,150*UV3 =
-0,090*2,87 +0,150*(-16,02)=

F13X= -0,26 -2,40 = -2,66 kN
F13Y= 0,150*2,87 -0,251*(-16,02)=
F13Y= 0,43 +4,02 = 4,45 kN

In similar way one finds
Zo vinft men op dezelfde wijze

F31X= 2,66 kN and F31Yy= -4,45 kN

Fig.6b.
The member end forces drawn with their
real directions.

F23y 355
23X 267
1———4— 2-—--
2 2
£39X A 267 /.
F39y 3,38

Fig.7a en 7b.
With the equations given on the prece-
ding page follow

F23X= 2,67 kN and F23y= 3,55 kN
F32X= -2,67 kN and F32Y= -3,55 kN

445 355
266 26

—————— g

low
Fig.8.

On joint 3 act member end forces as
large as but opposite directed.
Joint 3 is in equilibrium.

There are now six equations with six unknowns
but four are already known, UH1=0, UV(1l)=0,
UH(2)=0 and UV (2)=0.

(In a computer program the number of unknowns
can stay the same if the necessary changes are
applied like on page The concerning rows
and columns are filled with zeros and the dia-
gonal elements become 1. The system of six
equations is then solved the Gaus-, Crout- or
Inverse-method.)

1 0 0 0 0 0 UH1 0—|
0 1 0 0 0 0 uvl 0
0 0 1 0 0 0 UH2 | = 0
0 0 0 1 0 0 Uov2 0
0 0 0 0 234 42 UH3 0
0 0 0 0 42 507 ov3 -8
ccC x EA/1000 u f

For e.g. UH2 then follows (EA omitted)
0*UH14+0*UV1+1*UH2+0*UV2+0*UH3+0*UV3= 0 UH2=0.

The solution of the two remaining equations can
be as follows.

0,234*UH3 +0,042*UV3 0 5)

0,042*UH3 +0,507*UV3 -8 x (0,234/0,042)

-44,57 6)

I

0,234*UH3 +2,825*UV3

-2,783*Uv3 = 44,57 5) minus 6)

UvV3= 44,57/(-2,783) = -16,02 uv3= -16,02/EA

and with UV3 then follows UH3 = 2,87/EA.

Joint 3 displaces downward and to the right.

Member 1 is a tensile member with a tensile
force Sqr(2,66"2+4,4572)=5Sqr(26,88)= 5,18 kN
which lengthens the member.

| .

/

Fig.9.

Uv3=-16,02 downward can be resolved along and
perpendicular to the member.

Along the member (16,02/2,92)*2,5= 13,72 /EA.

UH3= 2,87 to the right can be resolved in

similar way
Along the member (2,87/2,92)*1,5= 1,47 /EA.

Member 1 lenghtens 13,72/EA+l,47/EA= 15,19/EA.

AL=FL/EA is 15,19/EA=F*2,92/EA from which
F=15,19/2,92= 5,20 kN 'is' 5,18 kN, correct.
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Example.

af To.35 Fig.1
3 10 ig.1.
T-) 2 £ Three members, statically indeterminate. Four
£4 4 3 440 m joints with eight displacements of which only
Leos 7 E4 two are unknown, UH4 and UV4.
=4 Member 1. Li= 1,49 m R1=EA/1,49= 0,671 EA
9 Dl= 1,05 m Cos(h) is C= 1,05/1,49= 0,705
WA D2=-1,05 m Sin(h) is $=-1,05/1,49=-0,705
| hOS A40 . R1*C”2= 0,671*(0,705)"2 = 0,334
i T 1 N R1*S*C= 0, 671*(-0,705)*0,705= -0,334
/4?.[ R1*S7~2= 0,671*(-0,705) "2 = 0,334
s 2 7 8 Member 2. 1.2= 1,75 m R2=FA/1,75= 0,571 EA
r - D1= 0 m c=0/1,75 = 0
1 334 -334 . . . . -334 334 D2=-1,75 m $=-1,75/1,75= -1
2|-334 334 . . . . 334 -334 R2*C~2= 0,571*0"2 = 0,000
- " . . . R2*S*C= 0,571*(-1)*0= 0,000
= . A . i R2*842= 0,571*(~-1)"2= 0,571
. . e e . . . Member 3. I=1,98 m R3=EA/1,98= 0,505 EA
71-334 334 . . . . 334 -334 D1=-1,40 Cc=-1,40/1,98= -0,707
8 334 -334 . . . . —334 334 D2=-1,40 8=-1,40/1,98= -0,707
- member 1 — R3*C~2= 0,505*(-0,707)"2 = 0,252
R3*S*C= 0,505*(-0,707)*(~0,707)= 0,252
3 4 7 8 R3*872= 0,505*(-0,707)"2 = 0,252
& @ ) . s @ . . F14X UH1 : :
3 .. 0 0 ¢ 0 0 F14Y uvi ‘ .
4 2 0 571 . 0 -571
“ * F24X UH2
. . - . . . F24Y uv2
7 : 0 0 0 0 = 85% = §b5*
8| . 0 -571 0 571 .
b member 2 - .
5 6 7 8 F41X UH4 F42X UH4
= | F41Y uv4 F42Y gva
. member 1 member 2
5 e e e 252 252 -252 -252 1 2 3 4 5 6 7 8
6 S 252 252 -252 -252 — -
7 .« & . =252 -252 252 252 il 334 -334 ., 5 : g -334 334
8 . . . . =252 =252 252 252 2| -334 334 . @ : . 334 -334
- staaf 3 - 3 0 0 . . 0 0
4 F 0 571 . . 0 ~571
Of eight equations two remain to cal- 5 252 252 -252 -252
culate the unknowns UH4 and UV4. 6 ¥ p . . 252 252 -252 -252
7|-334 334 0© 0 -252 -252 586 -82
The on the member ends upward acting 8 334 -334 0 -571 -252 -252 -82 1157

member end forces act on joint 4 oppo- —
site directed, is downward.
The joint load force of 11 kN is also

[aey
\N]
W
P
w
[e )}
~J
[o4)

directed downward. — 5 = —= —
T vert. joint 4=0 F41Y+F42Y+F43Y+11=0 1 1 0 0 0 0 0 O 0 UHL 0
of FA4lY+F42Y+F43Y= -11 kN. 2 o1 0 0 0 0 O 0 uvl 0
3 0 01 0 0 0 0 0 UH2 0
The two equations are, times EA, 4 0 0 01 0 0 O 0 X UV2 | = 0
5 0o 0 0 0 1 0 O 0 UH3 0
0,586*UH4 —-0,082*UV4= 0 6 0 0 0 0 0 1 O 0 uv3 0
! 7 0 0 0 0 0O 0O 586 -82 UH4 0
-0,082*UH4 +1,157*Uv4= -11 of which 8 0 0 0 0 0 0 -821157 uv4 -11

UH4= -1,34/EA and UV4= -9,60/EA. x EA/1000 cc

\a
~
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Calculation of member end forces with the help
of the elements of the member stiffness matri-
ces given in construction stiffness matrix CC,
see preceding page. Zero multiplications are
omitted.

Fig.2a en 2b.

F41X= EA(0Q,334*UH4 -0,334*UV4)
= EA(0,334*(-1,34/ER) -0,334*(-9,60/ER)
= -0,45 +3,21= 2,76 kN

F41Y= EA(-0,334*(-1,34/EA) +0.334*(-9,60/EA)
= 0,45 -3,21= -2,76 kN

F42x= EA( 0*UH4 +0*Uv4) = 0 kN

F42Y= EA( O0*UH4 +0,571*(-9,60/EA)=
= 0 - 5,48 = -5,48 kN

F43X= EA(0,252*(-1,34/ER) +0,252*(-9,60/EA)

= -0,34 -2,42 = -2,76 kN
A negative answer, not to the right as assumed
but directed to the left.

F43Y= EA(0,252*(-1,34/EA) +0,252*(-9,60/EA)
= -0,34 -2,42 = -2,76 kN

A negative answer, not upward as assumed but

directed downward.

With T hor.=0 and X vert.=0 of the three mem-
bers follow the member end forces at the member
ends 1, 2 and 3.

On the separated joint 4 act member end forces
as large as but opposite directed.

Sum horizontal and sum vertical of joint 4 is
zero, equilibrium.

The displacements of joint 4.
Fig.3

UH4= -1,34/EA, negative answer, joint 4 does
not displace to the right as assumed but to the
left.

Uv4a= -9, 60/EA, negative answer, joint 4 does
not displace upward as assumed but downward.

Member 1 is a tensile member, the tensile force
is 2,76*Sqr(2)= 3,89 kN.
With member length 1,49 m the member lengthens,

with AL='FL/EA' follows 3,89*1,49/EA = 5,80/EA.

Member 3 is a tensile force, 3,89 kN as well,
with length 1,98 the member lengthens
3,89*%1,98/EA = 7,70/EA.

Member 2 is a tensile member, tensile forse
5,48 kN, with a length of 1,75 m the member be-
comes 5,48*1,75/EA= 9,60/EA longer.

With some extra lines in the figure follows
with geometry
5,80/8qr(2)= 4,10 and 7,70/8qr(2)= 5,45.

4,10+1,34= 5,44 'is' 5,45 en
4,10+5,45= 9,55 =~ 9,60
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Example.
Fig.la en 1lb.

Member 1. Ll= 2,47 m R1=EA/2,47= 0,405
C=0,526 $=-0,850
R1*C"2= 0,112 R1*S*C=-0,181 R1*572= 0,293

Member 2. L2= 2,30 m R2=EA/2,30= 0,435
C=0,739 S= 0,674
R2*C"2= 0,238 R2*3*C= 0,217 R2*372=0,198

With these data the construction stiffness ma-
trix can be composed like shown earlier.

The elements of force vector f consist of joint
load forces and the joint load forces due to
the member loads, here own weight of the
members 0,6 kN/m. (see 1,48 and 1,38 kN)

For member 1 they are the on the joints 1 and 2
acting forces of (0,6*2,47)/2= 0,74 kN and for
member 2 the on joints 2 and 3 acting forces of
staaf 2 de op de knopen 2 en 3 werkende
(0,6*2,30) /2=0,69 kN.

F12X 112 -181 -112 181 UHL -
Fl2Y -181 293 181 -293 uvli F23X 238 217 -238 -217 UH2
= F23Y 217 198 =217 -198 Uuv2
F21X -112 181 112 -181 UHZ -
F21Y 181 -293 -181 293 uvz F32X -238 -217 238 217 UH3
- F32Y ~-217 ~-198 217 198 uv3
x EA/1000 -
Fig.2. The joint load forces are assumed directed up-
The member end forces of member 1 due ward. The vertical member end forces F12Y,
to the joint displacements alone! F21Y, F23Y and F32Y are assumed directed upward
and thus on the joints downward.
F12X= -0,112(1,78) +0,181(-17,31) Due to own weight act on the member ends forces
= -0,20 -3,13 = -3,33 kN directed upward and thus on the joints directed
downward.
Fl12y= 0,181(1,78) -0,293(-17,31)
= 0,32 +5,07 = 5,39 kN ¥ vert. joint 1=0 F12Y+0,78=0 F12Y=-0,78 kN
Oon joint 2 act 7,00 kN, 0,78 kN and 0,69 kN,
F21X= 0,20 +3,13 = 3,33 kN together 8,43 kN.
F21Y= -0,32 -5,07 = -5,39 kN Y vert. joint 2=0 F21Y+F23Y +8,43=0 or
= b 4 £ 5 N R F21Y+F23Y= -8,43 kN.
e member en orces due to own weig .. _ _ .
alone are added like shown here below. I vert. joint 3=0 F32¥+0,65=0 F32¥ s i
112 -181 -112 181 . . UH1 0
333 -181 293 181 -293 . 5 uvl -0,78
Pttt
-112 181 350 36 —-238 -217 UH2 | = 4]
_ 181 -293 36 491 -217 -198 uv2 -8,43
= -238 -217 238 217 UH3 0
-217 -198 217 198 UVBJ —o,sﬁ
cC u f

The unknown displacements UH2 and UV2 are cal-
culated by solving the next two equations.

Member 1 in equilibrium?

0, 350*UH2 +0,036*UV2= 0
Z mom. P= O

1,48(0,65)-3,33(2,10)-4,65(1,30)= 0,036*UH2 +0,491*Uv2= -8,43  from which

0,96-6,99+6,05= 0,02 »~ 0 OK. UH2= 1,78/EA and UV2= -17,31/EA.
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8,44 kN due to the displacements alone.

With own weight follows
8,44-0,74-0,69= 7,01 = 7,00 ok
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Fig.3.
The member end forces of member 2 due to the
joint displacements alone.

F23X= 0,238(1,78) +0,217(-17,31)
-0,42 +3,76 = 3,34 kN

F23Y= 0,217(1,78) +0,198(-17,31)
0,39 -3,43 = -3,04 kN

F32X= 0,42 -3,76 = -3,34 kN

F32Y= -0,39 +3,43

3,04 kN

The member end forces due to own weight are
added.

Fig.4.

The on joint 2 acting member end forces due to
joint displacements and ownweight and the joint
load force of 7 kN.

For joint 2 is I hor.=0 and X vert=0.

Fig.5.

The elements of force vector f here below con-
sist of the 'sum of the on the joints acting
member end forces due to the displacements’

Fl12X 112 -181 -112 181
Fl12Y -181 293 181 -293
F21X+F23X | = | =112 181 350 36 -238 -217 | .
F21Y+F23Y 181 —293 36 91 -217 -198
F32X i ¥ -238 -217 238 217
F32Y . . -217 -198 217 198
£ x EA/1000 cc
0] Fl2X= -3,33 kN
0 F12y= 5,39 kN
1,78 F21X+F23X= 0 kN
-17,31 F21Y+F23Y= -8,44 kN
0 F32X= 3,34 kN
0 F32Y= 3,04 kN
/EA u
F12X= -0,112(1,78) +0,181(-17,31)
= -0,20 -3,13 = -3,33 kN
F12y= 0,181(1,78) -0,293(-17,31)
= 0,32 +5,07 = 5,39 kN
F21X+F23X= 0,350(1,78) +0,036(-17,31)
= 0,62 -0,62 = 0 kN
F21Y+F23Y= 0,036(1,78) +0,491(-17,31)
= 0,06 -8,50 = -8,44 kN
F32x= -0,238(1,78) -0,217(-17,31)
= -0,42 +3,76 = 3,34 kN
F32Y= -0,217(1,78) -0,198(-17,31)

-0,39 +3,43 = 3,04 kN
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Example.

/5 AN
l 5 Member 1 with length Ll= Sqr(472+372)= 5,00 m.
H=3 L=2 Rl= EA/L1=EA/5,00= 0,200 EA kN/m

X1(3)=2 X1(2)=6 Dl= 2-6=-4,00m
Y1(3)=3 Y1(2)=0 D2= 3-0= 3,00 m
C=D1/L1=-4,00/5,00= -0,800
S=D2/L1= 3,00/5,00= 0,600

R1*C”2= 0,200*(-0,800)"2 = (0,128 EA
R1*S*C= 0,200*0,600*(-0,800)=-0,096 EA
R1*372= 0,200* (0, 600)"2 = 0,072 EA
= — r - . . A . 2 . : UH1
F13X 85 128 . . -85 -128
. . : uvl
F13Y 128 191 . . -128 -191
F23X 5 . 128 -96 -128 96 UH2
= F23Y ¢ g ~96 72 96 =72 uv2
F32X . . -128 96 128 -96 UH3
F31X -85 -128 . ‘ 85 128
F32Y : & 96 -72 -96 72 uv3
F31lY -128 -191 . 5 128 191 L - = - L =
e - L= — menmber 1
member 2
= - = = Member 3 with length Ll= 6,00 m.
F12X 167 0 -167 0 . H=2 L=1 R1l= EA/L1=EA/6,00= 0,167 EA
Fl2Y 0 0 0 0 s . X1(2)=6 X1(1)=0 D1=X1(2)-X1(1l)= 6-0= 6,00 m
Y1(2)=0 Y1(1)=0 D2=Y1(2)-Y1(1l)= 0-0= 0,00 m
F21X -167 O 167 0 . ] C=D1/L1= 6,00/6,00= 1,000
= s=D2/L1= 0,00/6,00= 0,000
F21Y 0 0 0 0 .
R1*C*2= 0,167*(1,000)"2 = 0,167
s § R1*C*S= 0,167*(0,000)*1,000= 0,000
R1*S872= 0,167*{0,000)"2 = 0,000
— - — — F12X+F13X 252 128 -167 O -85 -128
nmember 3
- =4 — — F12Y+F13Y 128 191 O 0 -128 -191
1 0 0 0 0 0 UH1 0
0 1 0 0 0 0 uvi 0 F21X+F23X -167 O 295 -96 -128 96
0 0 2950 -128 096 UH2 | = 0 F21Y+F23Y 0 0 -96 72 96 =72
6 00 1 0 0 * | uv2 0
F31X+F32X -85 -128 -128 96 213 32
0 0 -128 0 213 32 UH3 0
0 O 96 0 32 263 uv3 -15 F31Y+F32Y -128 -191 96 -172 32 264
cC u £ x EA/1000
The underlined elements are the sums of the
Three joints with two displacements, concerning elements of the member stiffness ma-
with 3 X 2 = 6 equations. trices, 85UH1 + 167UH1, 85 + 167= 252, and
The displacements UH1-0, UV(1)=0 and 128UH2 + 167UH2, 128 + 167= 295.
UV(2)=0 are known. In that case a 1 on - - i — =
the main diagonal and zeros on the con- 252 128 -167 O -85 -128 UHlW 0
cerning rows and columns. 1*UH1-0 etc. 128 191 O 0 -128 -191 uvl 0
0,295*UH2 -0,128*UH3 +0.096*UV3= 0 -167 O 295 -96 -128 96 UH2 | = 0
0 0 96 72 96 -72 | |uwv2 0
-0,128*UH2 +0,213*UH3 +0,032*Uv3= O
-85 -128 -128 96 213 32 UH3 0
0,096*UH2 +0.032*UH3 +0,263*UV3= -15 -128 -191 96 =72 32 264 UVB—J -15
With computer—-GAUSS page 99 follow cC u f
UH2= 40,2 UH3=35,6 Uv3=-76,0 /EA. F31Y+F32Y+15=0 so that F31Y+F32Y=-15.
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9-96l
3 6,70
q;?
2 g,03 /
£,70 :
'f’ 11500 2
s |
9196 J—&.3.'_. 303
I
9,961 1503
o
% 4 3 1 67/ AN
2
1o
996”0 2 Jf.as
— el é,‘ZI
M T T
o y 1——1;
29 523
3 4 5 6
3 3 W 128 -96 -128 -96
4 -96 72 96 -72
5 " . -128 96 128 -96
6 . = 96 -72 -96 72
member 1
1 2 5 6
1 85 128 . = -85 -128
2 128 191 . . -128 -191
5 -85 -128 . . 85 lgg
6| -128 -191 ; 128 191
memmber 2

2 0 0 0
3|-167 O 167 O
4 0 4] 0 0

member 3

g

-_FLHiW i R*C*C R*S*C —-R*C*C —R*S*Ci —ULim
FLHY R*S*C R*S*S —-R*S*C —-R*S*S ULy
FHLX B ~-R*C*C —R*S*C R*C*C R*S*C UHX
FHLY L—R*S*C -R*3*S R*S*C R*5*S UHY

Calculation of some member end forces with help
of £ = 85 * u of the members given of the pre-
ceding page. EA is omitted, the zero multipli-
cations as well.

Member 2.
F31%X= 0,085*UH3 +0,128*UV3=
0,085*35,6 +0,128*(-76,0)= 3,03 -9,73= -6,70 kN

F31Y= 0,128*UH3 +0,191*UV3=
0,128*35,6 +0,191*(-76,0)= 4,56-14,52= -9,96 kN

Similar with F31X and F31Y, or with X hor.=0
and ¥ vert.=0 of member 2.

F31X+F13X=0 -6,70+F13X=0 F13X= 6,70 kN
F31Y+F13Y=0 -9,96+F13Y=0 F13Y= 9,96 kN

In similar way one finds
F32X= 6,71 F32Y=-5,03 F23X=-6,71 F23Y= 5,03
F12X=-6,71 F12Y¥= 0 F21X= 6,71 F21Y= 0

On the left the member end forces are drawn
with their real directions. On the separated
joints act forces as large as but opposite di-
rected.

With ¥ hor.=0 and X vert.=0 follow the support
reactions.

Joint numbers L and H are member end numbers.

£ 55 u

The lowest member end number L and the highest
member end number H determine the place of an
element of member stiffness matrix S5 in the
construction stiffness matrix CC.

Row and column numbers 2*L-1, 2*L, 2*H-1, 2*H.

Member 1. F23X L=2 2*%2-1= 3 and 2*2= 4
H=3 2*¥3-1= 5 and 2*3= 6
For the rows and columns 3 and 4, and 5 and 6

1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)]
2 (2,1) (2,2) (2,3) (2,4) (2,5 (2,6)

3 (3,1) (3,2) (
4 (4,1) (4,2) (4,3)

(3,5) (3,6)
(4,5) (4,6)
S (5,1) (5,2) (5,3) (5,4) (5,5 (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

cC
Likewise for member 2 and 3. See on the left
the elements of the three S5's placed in CC.
The coinciding elements, on same places, are
added.
(5,5) of member 1 + (5,5) of member 2 is 213,
(2,1) member 2 + (2,1) member 3 is 128, etc.
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1 2 3 4
1| F12X 394 131 -394 -131 UH1
2 | F12Y 131 44 -131 -44 Uvl
3 | F21X -394 -131 94 31 UH2
4 | F21Y ~131 -44 131 44 uv2
member 1 1 2 5 6
1| F13X 71 177 =71 -177 UH1
2 | F13Y 177 444 =177 -444 Uuvl
5 | F31X -71 -177 71 177 UH3
6 | F31Y -177 -444 17 444 uv3
member 2 3 4 5 6
3 | F23X 356 -267 —-356 287 UHZ2
4 | F23Y -267 200 267 =200 uvz2
5| F32X -356 267 356 -267 UH3
6 | F32Y 267 -200 -267 200 uv3
member 3 x EA/1000
fvzyl
/ F/3X
Eray
Firx 2 4 . = .
= T'”3Y Frax N
(v
13X
Fay H&w
2 of
Fray |
3 ¥
F3/x
F37¥
[Fazy
/ -
FAIX
Farx 2 7
—

®HI
Fay | 2
||
\ ) 3
- I Falx
fzew £3zy

Example

The elements of the stiffness matrices are cal-
culated like done on the preceding page.

465 308 -394 -131 -71 -177 UH1 3

308 88 -131 -44 -177 -444 uvi -5
-394 -131 750 398 -356 -267 | | UHZ | = 0
-131 -44 398 244 -267 -200 uv2 0

-71 -177 -356 -267 427 -90 UH3 0
-177 -444 -267 -200 -90 644 uv3 0

CcC u f

Since the joint displacements UHZ, Uv2, and UV3
are known, here all three zero, UH2=0, UH2=0
and UH3=0, the concerning equations can be
missed. The altered CC then looks like shown
here below.

s e — — —

465 308 . i -71 . UH1 3
308 488 . . -177 . uvl -5

] . 1 : . ‘ .jvHE2 | = 0

. . . 1 . ‘ uv2 0
=71 =177 . . 427 . UH3 0

1 uv3 0

x EA/1000 cc u £

Fig.2.

The elements of force vector f follow with
equilibrium of the joints.

Z hor. joint 1 0
F12X+F13X -3 = 0

¥ vert. joint 1
F12Y+F13Y +5

F12X+F13X= 3

0
0 F12Y+F13Y= -5

0,465*UH1 +0,308*UV1l -0.071*UH3= 3
0,308*UH1 +0,488*Uvl -0,177*UH3= -5
0,071*UH1 -0,177*UV1 +0,427*UH3= 0

With computer Gauss follow

UHl= 23,90/EA UvVl= -28,12/EA UH3= -7,79/EA.

The reactions RH2 and RVZ of joint 2.
Fig.3.

F21X+F23X = see lst and 3rd member matrix.
member 1 F21X third row times column u and
member 3 F23X first row times column u.
-0,394(23,90)-0,131(-28,12)-0,356(-7,79)=-2, 97

F21X+F23X -RH2=0 -2,97 -RH2=0 RH2=-2, 97 kN
Not to the right but directed to the left.

F21Y+F23Y = see lst and 3rd member matrix.
member 1 F21Y fourth row times column u and
member 3 F23Y second row times column u.
-0,131(23,90)-0,044(-28,12)+0,267(-7,79)=-3,97

F21Y+F23Y -RV2=0 -3,97 —-RV2=0 RV2=-3,97 kN
not directed upward as assumed but downward.
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Feans

L Tagzﬂéy
v
Fli LTL.:L | FArlx x
— — ——
UL x 1T7 2%
L
FLHxX R -R ULx R=EA/L
FHLx -R R UHx
Fig.la.
— = e |
FLHy 0 0 ULy
FHLy 0 0 UHy
Fig.1lb.
F 7 o T m
FLHx R -R 0 ULx
FLHy 0 0 0 ULy
FHLx -R R 0 UHx
FHLy L 0 0 0 UHy
L - = —
£f S uu
Fig.lc.

= A

K=Cos {ax) and
ax from X to x

U=Cos (ay) and
ay from X to y

|
<
(o]
(=]

=3
L=Cos (bx),
and bx from Y to x.

v=Cos (by),
and by from Y to y.

2a. Space trusses.

2a.l. The member stiffness matrix of a member
of a plane truss.

Derivation of the relation between member end
forces, siffness matrix and member end displa-
cements w.r.t. construction axis system X-Y.
The member axis system is x-y.

Fig.la.

The relation between member end forces and and
member end displacements like found on page
Fig.1lb.

The member end forces perpendicular to the mem-
ber axis x expressed in the member end displa-
cements perpendicular to the member axis x. It
concerns a truss member with member end forces
FLHy and FHLy equal zero.

Fig.lc.

Both figures composed deliver the here drawn
relation ff = S uu.

Fig.2.

The member end forces FLHx, FLHy, FHLx and FHLy
w.r.t. the member axis system x-y can be ex-
pressed in the member end forces FLHX, FLHY,
FHLX and FHLY w.r.t. the construction axis sys-
tem X-Y. Below shown in matrix form in which T
is the socalled transformation matrix.

_FLHx— —Cos(ax) Cos (bx) 0 0 FLHX
FLHy Cos (ay) Cos (by) 0 0 FLHY
FHLx 3 0 0 Cos (ax) Cos(bx). FHLX
FHLy 0 0 Cos(ay) Cos(by)|| FHLY

- ff T T o £ -

In similar way follows the relation uu = T u.

—ﬁqu _Cos(ax) Cos (bx) 0 0 ] _ULX_
ULy Cos (ay) Cos (by) 0 0 ULY
UHx M 0 0 Cos (ax) Cos(bx)' UHX
UHy 0 0 Cos (ay) Cos (by) UHY—|

_uu - T o u

In £f = S uu of Fig.lc with

fE=TE¢E

and uu = T u follows T £f=8T u.

T f and S T u multiplied by the inverse

g gives T T £ =T S T u.

T times T gives unity matrix I, so thet

f=T" STu with 85 =T+ S T.

Next the matrix multiplications ate carried
out, first

S times T and after that T times S T.
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R 0
0 0
-R 0
0 0
S
K U
L v
Q 0]
0 0]
T-1
FLH%
FHLx
FLHx
FHLx
££
Ulx
Uhx
uu
R -R
-R R
S
K 0
L 0
0 K
0 L
T-1

-R 0 K L 0 0 R*K R*I, —-R*K -R*L W
0 0 U v 0 0 0 0 0 0
R 0 0 0 K L -R*K -R*L R*K R*L
0 0 0 0 U v 0 0 0 0
oy = 4 L _
T (8 T)
0 0 R*K R*I, -—-R*K -R*L R*K"2 R*K*I, -R*K"2 -R*K*L
0 0 0 0 0 R*K*L R*¥L"2 -R*K*L -R*L"2
K U -R*K -R*L R*K R*L -R*K"2 —R*K*IL R*K"2 R*K*L
L \Y 0 0 0 —R*K*I, -R*L"2 R*K*L R*L"2
(S*T) _| S5
fﬂ} After the two matrix multiplications the final
member stiffness matrix S5 has arisen.
R R ULx Fig.3a.
. /) Bnother way. It is not necessary to apply the 4
-R R UHz “ x 4 matrices since FLHy=0 and FHLy=0.
Fig.3b.
One may f£f = Tu and uu = T u of the prece-
I~ I ding page represent in a 'shorter' way by omit-
FLHX ting FLHy, FHLy, ULy and UHy.
Again one may apply, preceding page,
K L 0 0 FLHY
. 2) £=T STu with S5=T ST so that
0 0 K L FHLX
| FHLY £ = 85 u.
T £ The mtrix multiplications can be carried out
because the number of elements of a row of the
r first 1) is equal to the number of elements of
ULXW a column of the second 2).
For example, element (2,3) of (S T) is R*K,
K L 0 © ULY the 2nd row of S tmes the 3rd column of T,
) (-R) (0) + R*K= R*K.
0 0 K L UHX Element (2,4) is R*L. The second row of S times
the third column of T, (-R)(0) + R*L= R*L.
UHY
= 5= Next the inverse T-1 is multiplied by (S T).
T u Element (4,2) of 85 is -R*L~2, the fourth row
/;'.15 of T-1 times the second column of (S T) is
ez (0) (R*L) + (L) (-R*L)= -R*L~2.  Etc.
K L 0 0 R*K R*L ~R*K -R*L
0 0 K L -R*K -R*L R*K R*L
T (8 T)
R*K"2 R*K*I, -R*K*2 -R*K*L
R*K R*L, -R*K -R*L R*K*L R*¥L"2 <-R*K*L, -R*L"2
-R*K ~R*L R*K R*L -R*K”2 —-R*K*L R*K"2 R*K*L
-R*K*L, —-R*L"2 R*K*L R*L"2
(S T) 85
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—

Cos {ax)

\‘Cos(ay)
Cos (az)
0

0

Ly 4s.

Cos (bx)

Cos (by)

Cos (bz)
0

0

2a.2. The member stiffness matrix of a member
of a space truss.

Fig. 4a en 4b.

Member end force FLHx consists of the compo-
nents of the member end forces FLHX, FLHY and
FLHZ w.r.t. the construction axis system X-Y-Z.

The forces FLHx and FHLx are directed like the
x axis, the concerning shown angles are,

ax the angle between X- and x- axis,

bx the angle between Y- and x- axis, and

o

cx the angle between Z- and x- axis.

See the three figures, fig.4b with the compo-
nents. With the cosines of the shown angles, ax,
bx and cx, follows for FLHX at member end L,
FLHx= FLHX*Cos (ax) +FLHY*Cos(bx) +FLHZ*Cos(cx).
and for FHLx at member end H,

FHIx= FHLX*Cos (ax) +FHLY*Cos (bx) +FHLZ*Cos (cXx) .

Force FLHy at member end L is perpendicular to
the x axis. For an y axis perpendicular on the
x axis, not shown in the figure, are

ay the angle between X- and y- axis,

by the angle between Y- and y- axis, and

cy the angle between Z— and y- axis.

Then follows for force FLHy at member end L the
sum of components,

FLHy= FLHX*Cos (ay) +FLHY*Cos (by) +FLHZ*Cos (cy) .
And for FHLy at member end H perpendicular to
the x axis follows

FHLy= FHLX*Cos (ay) +FHLY*Cos (by) +FHLZ*Cos (cy) .

Force FLHz at member end L and FHLz at member
end H are perpendicular to the x axis. For a z
axis perpendicular to the x axis are, not shown
in the figure,

az the angle between X- and z- axis,

bz the angle between Y- and z- axis, and

cz the angle between Z- and z- axis.

And follow like above the equations,

FLHz= FLHX*Cos (az) +FLHY*Cos(bz) +FLHZ*Cos(cz)
and, with HL i.s.o. LH,

FHLz= FHLX*Cos (az) +FHLY*Cos(bz) +FHLZ*Cos(cz).

The six (underlined) equations are given here
below in matrix form ff = T f. The position of
a member is determined by the x axis along the
member. The x axis determines the y axis and
thus the z axis, or determines the z axis and
thus the y axis. A choice has to be made.

Cos (cx) 0 Q 0 _l —FLHX—
Cos (cy) 6] 0 0 FLHY
Cos(cz) 0 0 0 FLHZ
0 Cos (ax) Cos (bx) Cos (cx) FHLX
0] Cos (ay) Cos (by) Cos (cy) FHLY
0 Cos (az) Cos (bz) Cos (cz) i FHLZ
T - £ )
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The elements of transformation matrix T of the
preceding page can be simplyfied by replacing
them by letters.

B = K=Cos (ax) L=Cos (bx) M=Cos (cx)
K L M 0 0 0 |
U=Cos (ay) V=Cos (by) W=Cos (cy)
U v W Q 0 0
X-Cos(az) Y=Cos (bz) z=Cos (cz)

Since it concerns a member of a truss, with

0 0 0 K L M joints regarded as hinges, there are no member
end forces at the member ends perpendicular
0 0 0 v) v W tomember axis x. Like on page ff =T f and

uu = T u can be simplyfied..

- Member stiffness matrix S5 can be found by ma-
T trix multiplicatiom.

Rem. The variables U, V and W, X, Y and Z do
not appear in S5. Here below T-1 (8 T)= 35.

FLHX ULX
FLHY ULY
FLHX K L M 0 0 o0 FLHZ ULx K L M ©0 0 O ULZ
FHLx 0 0 0 K L M FHLX Uhx 0 0 0 K L M UHX
e |
£F T FHLY uu T UHY
FHLZ UHZ
L _ L. =]
R -R K L M O 0 0 R*K R*L R*M ~-R*K -R*L -R*M
-R R 0 0 0 K L M _R*K -R*L -R*M R*K R*L R*M
s T (s T)

R*K"2 R*K*L R*K*M ‘|-R*K"2 -R*K*L -R*K*M

K O
L 0 R*K*I, R*L~2 R*L*M |[-R*K*L -R*L"2 -R*L*M
M 0 R*K R*L R*M -R*K -R*L -R*M R*K*M R*L*M  R*M*2 |-R*K*M -R*L*M -R*M"2
K . -R*K -R*L -R*M R*K R*L R*M ) -R*K"2 -R*K*L —R*K*M__;*K’:;_ __I:*K*L R*K*M

L - _R*K*L -R*L"2 R*L*M | R*K*L R*L"2 R*L*M

MJ _R*K*M -R*L*M -R*M~2 | R*K*M R*L*M  R*M"2
T-1 (S T) - S5 -

$5(2,3) is second row of T-1 times third column
Modulus of elasticity E in kN/m"2, of (8 T) is L*(R*M) + 0* (-R*M)= R*L*M.

strain stiffness EA in (kN/m"*2)x(m"2) $5(3,5) is third row of T-1 times fifth column
is in kN,
of (S T) is M*(-R*L) + O*(R*L)= -R*L*M.

member length Ll in m,
85(6,6) is sixth row of T-1 times sixth column

member stiffness factor R= EA/LL
in kN/m. of (8 T) is O0*(-R*M) + M*(R*M)= R*M"2.
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Example.

1 >/ 7 f?A%/ Fig.1l.

Three members and four joints. No own
weight.Strain stiffness EA kN. (kKN/m"2) * (m™2)
The coordinates of the joints.

4 X1(1)= 3,5 Yl(l)= 4,5 z1(1)= 1,0 m
X1(2)= 0,0 Y1(2)= 0,0 Z21(2)= 0,0 m
2] X X1(3)= 6,5 Y¥1(3)= 0,0 721(3)= 1,0 m
p w,( jx:// — X1(4)= 6,0 Y1l(4)= 0,0 7z1{(4)= 4,0 m
05,.3 Member 1. D1=X1(H)-X1(L)= 0-3,5= -3,5 m
Y . D2=Y1 (H)-Y1(L)= 0-4,5= -4,5 m
7 D3=21(H)-21(L)= 0-1,0= -1,0 m
& m L1=8qr (D1~2+D2~2+D3"2)
e - Fnd =Sqr((-3,5)"2+(-4,5)"2+(-1,0)"2)
Z Q-4 L1=Sqr(33,50)= 5,79 m
Member 1. K=D1/Ll= -3,5/5,79= -0,60 The member stiffness matrix S5 of member 1.
L=D2/L1= -4,5/5,79%9= -0,78 Siffness factor 'R=EA/L', R1=EA/5,79= 0,173.
M=D3/L1l= -1,0/5,79= -0,17 The letters A, B, C, D, E and F
represent the elements of matrix S5 of the pre-
A=R1*K"2=0,173*%(-0,60)"2 = 0,062 EA ceding page. See the calculation on the left.
B=R1*K*1=0,173* (-0, 60) (-0,78)= 0,081 EA
C=R1*K*M=0,173* (-0, 60) (-0,17)= 0,018 EA Here below S5 represented with letters.
D=R1*L~2=0,173*(-0,78)"2 = 0,105 EA FLHX A B C|-A-B-C ULX | Page 3/ .
E=R1*L*M=0,173*(-0,78) (-0,17)= 0,023 EA FLHY B D E|-B ~-D -E ULY
F=R1*M"2=0,173*(~0,17)"2 = 0,005 EA FLHZ cC E F|-C-E -F ULZ
Member 2. il 2 3 7 8 S FHLX -A -B -C A B C UHX
— = — = FHLY -B -D -E B D E UHY
F13X 1 56 -84 0 -56 84 0 FHLZ -C -E -F C E F UHZ
F13Y 2l -84 127 0 84 -127 0 — - = - =
F132 3 0 0 0 0 0 0 1 2 3 4 5 6
F31X 7 -56 84 0 56 -84 0 F12X 1 62 81 18 -62 -81 -—18—| Ux1
F31Y g 84 -127 0 -84 127 0 F12Y 2 81 105 23 -81 -105 -23 Uyl
F31%2 9 0 0 0 0 0 0 Fl27 3 18 23 5 -18 -23 -5 Uzl
Member 3. 1 2 3 10 . 11 12 F21X 4| -62 -81 -18 62 81 18 Ux2
— - = - F21Y 5| -81 -105 -23 81 105 23 Y2
F1l4X 1 30 -54 35 =30 54 -35 F217 6| -18 -23 -5 28 23 5 Uz2
F14Y 2l =54 97 -64 54 =97 64 — =3 — =1 A =
Fl42z 3 35 -64 42 -35 64 -42 £ x EA/1000 S5 u
F41X | 10 =30 54 -35 30 -54 35 An in similar way for member 2 and 3.
F41Y | 11f 54 -97 64 -54 97 -64 Member 2. Dl1=6,5-3,5= 3,0 D2= 0,0-4,5= -4,5
F4l1z | 12 -35 64 -42 35 -64 42 p3=1,0-1,0= 0,0 L2=Sgr(29%9,25)= 5,41 m
[ J Member 3. D1=6,0-3,5= 2,5 D2= 0,0-4,5= —4,5
£ x EA/1000 S5 D3=4,0-1,0= 3,0 L3=Sgr(35,50)= 5,96 m
1 2 3 4 5 6 7 8 9 10 11 12
— = - = s
F12X +F13X +F14X 1148 =57 53 -62 -81 -18 -56 84 0 -30 54 -35 9
F12Y +F13Y +F1l4Y 21 -57 329 -41 -81 -105 -23 84 —-127 0 54 =97 64 o]
F12Z +F13Z +F14%2 3 53 -41 47 -18 -23 -5 6 0 0 -35 64 -42 0
F21X 4| -62 -81 -18 62 81 18 3 3 % 2 . . 0
F21Y 5| -81 -105 -23 81 105 23 a . > 2 - . 0
F212 6| -18 -23 -5 28 23 5 , . . . ] . 0
F31X 7| =56 84 0 . 5 i 56 -84 0 s - . 0
F31Y 8 84 -127 0 z ) . -84 127 0 . s F 0
F31Zz 9 0 0 0 . . . 0 0 0 i A v 0
F41X 10 | =30 54 =35 . s " . . . 30 -54 35 0
F41Y 11 54 -97 64 . . . 3 % . —54 97 -64 6]
F41Z 12| -35 64 -42 W d % . . . 35 -64 42 0

x EA/1000 cC
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F
Fr2y, 73y
Flay l L LFuﬂy
F73x [o —a QOO

13z %5.2.

Calculation of the member end forces
with member ends 1.

Member 1.

Fl12X= 0,062EA(102,5/ER)
+0,081EA (3, 8/ER)
+0,018EA(-112,3/E3)=
6,36+0,31-2,02= 4,65 kN

Further EA omitted.
Fl12Y= 0,081(102,5) +0,105(3,8)
+0,023(~-112,3)=
8,30 +0,40 -2,58= 6,12 kN

F122z= 0,018(102,5) +0,023(3,8)
0,005(~112,3)=
1,85 +0,09 -0,56= 1,38 kN

Member 2.
F13X= 0,056(102,5) -0,084(3,8) +0=

5,74 -0,32= 5,42 kN
F13Y= -8,13 kN en F13Z= 0,00 kN

Member 3.
F14X= 0,030(102,5) -0,054(3,8)
+0,035(-112,3)=
3,08 -0,21 -3,93=-1,06 kN
F14Yy= 2,02 kN en Fl14Z=-1,37 kN.

Joint 1 in equilibrium?

Y2 X =0 ? Fl2X+F13X+F14X-9,00=0 2
4,65+5,42-1,06-9,00= 0,01 kN yes

2 Y =0 ? F12Y+F13Y+F14Y=0 ?
6,12 -8,13 +2,02= 0,01 kN yes

7 =0 ? F12Z+F13Z+F147Z=0 ?
,38 +0 -1,37=0,01 kN yes

/Fds z79 /
/ /\9 /

x

2 2
/4-'”* ’(7 e %.3

F21X=-4, 65 F21Y=-6,12 F217=-1,38 kN
F21lx= K*F21X+L*F21Y+M*F21Z= 7,81 kN

The displacements of the three supports 2, 3
and 4 are prescribed, all zero,

UX2=0, UY2=0 and UZ2=0, UX3=0, UY3=0 and UZ3=0,
UX4=0, UY4=0 and UZ4=0.

1 2 3456 7 8 9101112

148 -57 53000000000 9 UX1
-57 329 -41 000000000 0 Uyl
53 -41 47 0 00 0000CO00O 0 Uzl
0 0 0100000000 0 Ux2
0 ¢ 001000C600C0CC0C 0 uy2
0 0 0001000000 0 uz2
0 0 0000100000 0 UX3
0 0 0 00ODODO0D10000 0 UY3
0 0 0000001000 0 Uz3
0 0 0000000100 0 UX4
0 0 0000000010 0 Uuy4
0 0 0000000001 0 Uz4
x EA/1000 cc

The displacements UX1l, UYl and UZl of joint 1
are unknown. There are three equations left to
solve.

l
G

EA( 0,148*UX1 -0,057*UY1 +0,053*UZ1)
EA(-0,057*UX1 0,329*UY1l -0,041*Uz1)
EA( 0,053*UX1 -0,041*UY1 +0,047*0zZ1) = 0

I
[w]

Computer-GAUSS delivers
UX1=102,5/EA, UYl= 3,8/EA and UZl=-112,3/EA.

Fig.2.

The member end forces are directed as assumed
for the assumed X-, Y- and Z-axis. On the
joints act these forces opposite directed,
shown in the figure.

They are calculated with help of the member ma-
trices 85, preceding page, f = S5 u.

Fig.3.

Assumed direction of the x axis from L to H.
The on the member ends acting member end forces
FLHx and FHLx are directed like the x axis.
Member 1.

Calculation of member force F12x with L=1 and
H=2. See the relation ff = T f of page 3/ .
K=Cos (ax)= D1/L1=-3,5/5,79= -0,60

1=Cos (bx)= D2/L1=-4,5/5,79= ~-0,78

M=Cos (cx)= D3/L1=-1,0/5,79= -0,17

Then can be written for F12x, page :

Fl12x= Cos (ax)*FLHX +Cos (bx)*FLHY +Cos (cx)*FLHZ

or

Fl2x= K*F12X + L*F12Y + M*F127

zodat

Fl2x= -0,60(4,65) +(-0,78) (6,12) +(-0,17) (1,38)
= ~2,79 -4,77 -0,23= ~-7,79 kN

A hegative answer, in reality the force is not
as assumed like the x axis directed, but oppo-
site directed. The force pulls at the member
end, the member is a tension member. For the
other member end one will find F2lx= 7,79 kN,
the force pulls at member end 2.
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Member 4. 4 5 6 7 8 9

F23X 4 149 0 23 -149 0 -23

F23Y 5 0 0 0 0 0 0

F237Z 6 23 0 3 -23 0 -3

F32X T-148 0 -23 148 0 23
F32Y 8 0 0 0 0 0 0

F327 9 -23 0 -3 23 0 3
Member 5. 4 5 6 10 11 12

F24X 4 96 0 63 -96 0 -63

F24Y 5 0 0 0 0 0 0

F2427 q 63 0 42 -63 0 -42

F42X | 10} -96 0 -63 96 0 63

F42Y | 11 0 0] 0] 0 0 0

F427 | 12| -63 0 -42 63 0 42
Member 6. 7 8 9 10 11 12
- _ — =

F34X 7 8 0 -52 -8 0 52

F34Y g 0 0 0 0 0 0

F342 9 —-52 0 322 52 0 -322

F43X | 10 -8 0 52 8 0 -52

F43Y | 11 0 0 0 0 0 0

F437 | 12| 52 0 =322 -52 0 322
In these S5's no combinations 1-2-3 and

therefore no alterations of the earlier
CC of page

F12X
F12Y
Fl2z

F21X
F21Y

+F13X +F14X
+F13Y +F14Y
+F137Z +F142

+F23X +F24X
+F23Y +F24Y
F21Z +F237 +F247

F31X +F32X +F34X
F31Y +F32Y +F34Y
F317Z +F32Z +F347Z

F41X +F42X +F43X
F41Y +F42Y +F43Y
LF4lZ +F427 +F43%

|

10
11
12

1 2 3
148 =57 53
-57 329 -41
53 -41 47
-62 -81 -18
-81 -105 -23
-18 -23 =5
-56 84 0
84 -127 0
0 0 0
-30 54 -35
54 -97 64
=35 64 -42

x EA/1000

Fig.4.

Three members are added. The displacements of
the supports 2 and 3 are prescribed and all
zero, UX2=0, UY2=0, UZ2=0, UX3=0, UY3=0, UZ3=0.

The vertical displacement of of support 4 is
prescribed, UY4=0. Joint/support 4 can displace
horizontally according X and Z axis, UX4 and
UZ4, being unknown. Then a free deformation due
to temperature change is possible.

The three added members 4, 5 and 6 give three

member stiffness matrices S5 shown on the left.

They are put in construction matrix CC of page
32 . See here below.

Now 5 equations have to be solved to get the
unknowns UX1, UY1l, UZl, UX4, and UZ4, schemati-
cally shown here below.

Uxi Uyl Uzl UXx4 uz4
0,148 -0,057 0,053 -0,030 -0,035 =9
-0,057 0,329 -0,041 0,054 0,064 = 0
0,053 -0,041 0,049 -0,035 -0,042 =0
-0,030 0,054 -0,035 0,134 0,046 = 0
-0,035 0,064 -0,042 0,046 0,406 = 0O

Computer~GAUSS delivers

UX1=104,1/EA, UY1=4,9/EA, UZ1=-123,5/EA,

UX4=-9,7/EA and Uz4=-3,5/EA.

Calculation of the member end forces F127Z, F13Z
and F14Z directed like Z, on joint 1 opposite
directed. See the concerning member matrices.
EA is omitted.

F12z= 0,018(104,1)+0,023(4,9)+0,005(-123,5)=
= 1,87 i 0,11 -0,62 = 1,36 kN

F13%Z= 0 kN (Member 2 in the vertical plane.)

Fl14Z= 0,035(104,1)-0,064(4,9)+0,042(-123,95)
-0,035(-9,7)-0,042(-3,5)

= 3,64 -0,31 -5,19 40,34 +0,15 =-1,37 kN

2zZ=07 1,37 40 -1,37= 0 vyes

4 5 6 7 8 9 10 11 12
-62 -81 -18 -56 84 0 -30 54 -35 9
-81 -105 -23 84 -127 0 54 -97 64 0
-18 -23 -5 0 0 0 -35 64 -42 0

T
307 81 104 (-149 0 -231{-96 0 -63 0
81 105 23 0 0 0o, o 0 0 0
104 23 50| -23 0 -3|-63 0 -42 0
-149 0 -23| 213 -84 -29| -8 0 52 0

0 0 0| ~84 127 0 0 0 0 0
-23 0 -3|--29 0 319/ 52 0 -322 0
-96 ¢ -63| -8 0 52| 134 -54 46 0

0 0 0 0 0 0| -54 97 -64 0
-63 0 -42| 52 0 -322| 46 -64 406 | 0

CcC
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Member 3.
I=1 and H=4, coordinates page

D1=X1(4)-X1(1l)= 6,0-3,5= 2,5 m
D2=Y1(4)-Y1(l)= 0,0-4,5= -4,5
D3=271(4)-21(1)= 4,0-1,0= 3,0
L3=Sqr (D172+4D2~2+D3*2)= 5,96 m

K=Cos (ax)= D1/L3= -3,5/5,96= 0,42 rad
1=Cos (bx)= D2/L3= -4,5/5,96= -0,76
M=Cos (cx)= D3/L3= -1,0/5,96= -0,50

Fryx 2,66 Ly
-
3
Y
Folx \ \2A554“%‘
Fig.b.
Member 5.

I=2 and H=4,.

D1=X1(4)-X1(2)= 6,0-0,0= 6,0 m
D2=Y1(4)-Y1(2)= 0,0-0,0= 0,0
D3=21(4)-Z1(2)= 4,0-0,0= 4,0
L5=8qr(6,072+0,072+4,072)= 7,21l m

K=Cos (ax)= D1/L5= 6,0/7,21= 0,83 rad
L=Cos (bx)= D2/L5= 0,0/7,21= 0,00
M=Cos (cx)= D3/L5= 4,0/7,21= 0,56

Member 6.
L=3 and H=4.

D1=X1(4)-X1(3)= 6,0-6,5= -0,5 m
D2=Y1(4)-Y1(3)= 0,0-0,0= 0,0
D3=21(4)-21(3)= 4,0-1,0= 3,0
1L5=Sqr (6, 072+0,072+4,0"2)= 7,21 m

K=Cos (ax)= D1/L5=-0,5/7,21= -0,07 rad
L=Cos (bx)= D2/L5= 0,0/7,21= 0,00
M=Cos (cx)= D3/L5= 3,0/7,21= 0,42

Fig.5.

The member end forces FLHx and FHLx with
I, the lowest member end number and

H the highest member end number.

The x-y axes system assumed at L and the x axis
directed from I to H. Same direction for the on
the member ends acting member end forces FLHX
and FLHy.

Assumed FLHx presses on member end L, the mem-
ber is a compression member. A negative answer,
then FLHx does not press as assumed but pulls
at member end I, in that case is the member a
tension member.

Assumed FHLx pulls at member end H, the member
is a tension member. A negative answer, then
FHLx does not pull at but presses on member end
H and is the member a compression member.

Fig.6.

Calculation of member force F4lx of member 3
with help of the member end forces F41X, F41Y
and F4lz. See S5 of member 3 page 32.

F41X=-0,030(104,1)+0,054(4,9)-0,035(~-123,93)
+0,030(-9,7) -0,054(0) +0,035(-3,5)=
-3,12 +0,26 +4,32 -0,29 -0,12= 1,05 kN

F41Y= 0,054 (104,1) -0,097(4,9) +0,064(-123,5)
-0,054(-9,7) +0,097(0) -0,064(-3,35)=
5,62 -0,47 -7,90 -0,52 +0,22= -2,01 kN

F417=-0,035(104,1) +0,064(4,9) -0,042(-123,5)
+0,035(-9,7) -0,064(0) +0,042(-3,5)=
-3,64 +0,31 +5,19 -0,34 -0,15= 1,37 kN

F4lx= K*F41X +L*F41Y +M*F417=
= 0,42(1,05)+(-0,76) (-2,01)+(0,50) (1,37)
= 0,44 +1,53 +0,69 = 2,66 kN

A positive answer, F4lx pulls at member end 4
as assumed.
Member 3 is a tension member, 2,66 kN.

If one calculates F14X, F14Y and F14Z for mem-
ber end 1 of member 3, and next Fl4x then one
will find Fldx= -2,66 kN. A negative answer,
Fl4x does not press on member end 1 as assumed
but pulls at member end 1.

Member 3 is a tension member, 2,66 kN,

Calculation of member force F42x of member 5.
See S5 of member 5 the preceding page. EA and
zero multiplications omitted.

F42X= 0,096(-8,7) +0,063(-3,5)=
-0,93 -0,22= -1,15 kN

F42Y= 0,00 kN

F422= 0,063(-9,7) +0,042(-3,5)=
~0,61 -0,15= -0,76 kN

F42x= K*F42X +L*F42Y TM*F427Z=
= 0,83(-1,15)+0(0)+0,56(-0,76)=
=-0,95 +0 -0,43= -1,38 kN

A negative answer, F42x does not pull at member
end 4 as assumed but presses on member end 4.
Member 5 is a compression member, 1,38 kN. Etc.
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URA=MA1*L/ (4*EI) MA1l=(4*EI/L)*URA

MB1l=(2*EI/L) *URA

URB=MA2*L/ (4*EI) MA2=(2*EI/L) *URB

MB2=(4*EI/L) *URB

MAB 4EI/1 2EI/L URA

MBA |_2EI/L 4FT/L URB

MAB D E URA
MBA i E D J‘ URB
B £ ) - S5 - u B
'forces' -, forces or moments
‘displacements' - rotatiomns or
displacements

Fip.24

3. Continuous beams over several supports with-
out (wertical) support displacements ({(transla-
tions) without internal hinges between the
supperts. Beams/members.

Fig.1.

A continuous beam on four supports, the joints
at the supports represented with the short line
pieces. For now no joints betwee the supports.
The joints are loaded with joint load moments,
assumed direction to the right.

The joints rotate by deformation of the members
due to member loads and joint loads.

3.1. The relation between member end moments
and joint rotations of a member on 2 supports.

Fig.2a.

The beam/member is drawn separated from the
supports.

The member is drawn separated from the joints.
On the member ends act member end moments MAB
and MBA, assumed direction to the right.

The member end rotations, slope deflections,
URA and URB, assumed direction to the right.
This member with moments MAB and MBA, and rota-
tions URA and URB, can be regarded as the sum
of figure 2a and 2b.

Fig.2b.

The member is clamped on the right. To an
assumed rotation URA to the right belongs a to
the right acting member end moment MAI.

By deformation of the member arises a clamp mo-
ment to the right at B.

According to the formula given on page 9;zis
the slope deflection URA at due to MAl

URA= MALl*L/(4*EI), and is MB1=MAl1/2 so that

MAl= (4*EI/L)*URA and

MBl= (2*EI/L)*URA. (Rem. F=(EA/L)*AL )

(4*EI/L) and (2*EI/L) are the member stiffness
factors, or beam stiffness factors.

Fig.2c.

In similar way with the clamp at the left beam
end with moment MB2 to the right and uURB to
the right, and clamp moment MA2= MB2/2.

MA2= (2*EI/L)*URB and

MB2= (4*EI/L)*URB.

When summed follow for figure 2a
MAB= MAl+MA2 1) and MBA=MB1+MB2 2) or
MAB= (4*EI/L)*URA +(2*EI/L) *URB 1)

MBA= (2*EI/L)*URA +(4*EI/L)*URB 2).

The relation between member end moments MAB and
MBA and member end rotations URA and URB are
represented on the left in matrix form.

(Rem. Spoken in general, member end 'forces'
and member end ‘displacements’'.)
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MAB D1 Elw URA /77 3.
MBA E1 D1 URB
MBC D2 E2 URB
MCB E2 D2 URC
L4 L 4L
£ S5 u
MAB Bl E1 0 URA
MBA+MBC | = | E1 D1+D2 E2 |-| URB
MCB 0 E2 D2 URC
£ cc u
D1 E1 0 URA 0
El1 Dl+D2 E2 |*|URB | =| -5
0 E2 D2 URC 0
ce u £
1538 769 0 UR1 0
769 3516 928 |+| UR2 -5
0 964 1928 | | UR3 0
cc u £
x EI/100
1 0 0 UR1 0
0 3516 0 +|UR2 | =] -5
I
0 82 164 UR3 0
cC u £

Fig.3.

The consruction consisting of two beams of
which beams and joints are separtated from each
other.

The on the member ends acting member end mo-
ments are assumed directed to the right. On the
the joints act these member end moments as
large as but opposite directed, thus to the
left. The joint rotations, or slope deflecti-
ons, URA, URB and URC are assumed directed to
the right.

Now there are two systems of equations shown on
the left in matrix form, £ = S5*u with the S5's
as member stiffness matrices.

= D1*URA +E1*URB D1=(4*EI1/L1)
MBA= E1*URA +D1*URB El=(2*EI1/L1)
MBC= D2*URB +E2*URC D2=(4*EI2/L2)
MCB= E2*URB +D2*URC E2=(2*EI2/L2)

To compose to three equations, shown in matrix
form, £ = CC*u with CC as construction stiff-
ness matrix.

MAB = D1*URA + E1*URB + O*URC
MBA+MBC= E1*URA + (D1+D2)*URB + E2*URC
MCB = (0*URA + E2*URB + D2*URC
Joint load moments MA, MB and MC are assumed

directed to the right. The elements of f of
CcC*u = f follow with equilibrium of the joints.

2 mom. joint A =0 MAB-MA=0 MAB= MA
¥ mom. joint B =0 MBA+MBC-MB=0 MBA+MBC= MB
Z mom. joint C =0 MCB-MC=0 MCB= MC
Fig.4.

UR2 is the unknown rotation. URA=0 and URC=0.
Support B with joint load moment MB= -5 kNm.

Al 23]
7 Ey = 2 287 ¥

; 2.bom 4.8

~

4.
Beam 1. L1=2,60 m
D1=4*1EI/2,60=1,538 E1=2*1EI/260=0,769 x EI
Beam 2. L2=4,15m
D2=4*2EI/4,15=1,928 E2=2*2E1/4,15=0,964 x EI

With 3,516*UR2= -5 follows UR2= -1,42 rad.

MAB= E1*URB= 0,769 (-1,42)= -1,09 kNm
MBA= D1*URB= 1,538(-1,42)= -2,18 kNm

MBC= D2*URB= 1,928(-1,42)= -2,81 kNm
MCB= E2*URB= 0,964 (-1,42)= -1,41 kNm

AQ? l . s.00 Lyt .
Qi-)l,og zl&(’%\)zm (q_é)

The on the joints acting moments are drawn with
their real directions with which follow the
reaction moments at clamp A and C.
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M12 200 100 UR1

M21 100 200 UR2

M23 164 82 UR2

M32 82 164 UR3

200 100 0 URL 0

100 364 g2 |«|um2 |=|-2,08

0 82 164 UR3 -1,92

x EI/100 CC u f
?fé 4§? ‘E?a k1

/4 ?2 /72

()
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Example.

Fig.1l.

The beam consists of two parts with bending
stiffness EI. Joint 2 is loaded with a joint
load force of 4 kNm to the left, beam 2 loaded
with a uniformly distributed load of 4 kN/m.

Beam end 3 of the second beam is regarded as a
real joint with an unknown joint rotation UR3.

The joint load moments have given values M1=0,
M2=-4 and M3=0 kNm. The joint load moments due
to the beam loads, the primary moements are
added.

Starting point are the joint rotations equal
zero, the undeformed situation, so UR2=0 and
UR3=0. For the at both ends clamped beam the
beam end rotations are zero. The on the beam
ends acting moments are

(1/12)*4*(2,4)72= 1,92 kNm

with directions as drawn.

On the joints act moments as large as but oppo-
site directed. On joint 2 to the right and on
joint 3 to the left. With assumed direction for
joint load moments to the right then follow
M2=1,92-4,00= -2,08 kNm and M3= -1,92 kNm.

The stiffness factors of the matrices S5.

Beam 1. L1=2,00 m
D1=4*EI/2,00= 2,00 El1=2*EI/2,00= 1,00 x EI

Beam 2. 1.2=2,40 m
D2=4*EI1/2,40= 1,64 E2=1*EI/2,40= 1,20 x EI

On the left the beam end moments M12, M21 and

M23 are given in matrix form £ = S5*u, next
composed to £ = CC*u, a system of 3 equations.

1 0 0 UR1 0

0 364 g2 |+|UR2 |=|-2,08
0 82 164 UR3 -1,92
x EI/100 CC u £

Since UR1=0 two equations remain.

3,64*UR2 +0,82*UR3 -2,08
0,82*UR2 +1,64*UR3 = -1,92 with which follow

UR2= -0,36 rad and UR3=-0,99 rad /EI

Fig.2.
M12= 1,00(-0,36)= -0,36 kNm
M21= 2,00(-0,36)= -0,72 kNm

M23= 1,64 (-0,36) +0,82(-0,99)
=-0,59-0,81=-1,40 kNm

M32=0,82(-0,36)+1,64(-0,99)
=-0,30-1,62=-1,92 kNm

The beam end moments are drawn with their real
directions.
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Member end moments without clamp spring
at joint 2.

( / 2 \392 KNn
446
( 2 3 )422
2,43

Fig.44,

Member end moments with clamp spring at
joint 2. MK2 is spring constant MS2
times angle URZ,

MK2=1,2ET*2,19/ET= 2,63 » 2,64 kNm OK!!

The rotation spring and spring moment.

Fig.1l.
Joint 2 with a joint load moment of 8 kNm to
the right.

S51 with D1l= 4EI/L= 4EI/3,0= 1,333 x EI
El= 2EI/L= 2EI/3,0= 0,667 x EI

S52 with D2= 4E1/3,6= 1,111 x EI
E2= 2EI/3,6= 0,556 x EI

851 and S52 form construction matrix CC.
With result like on the preceding page,

2,444RT*UR2= 8 so that UR2= 3,27/ET rad.

M12= 0,667EI*3,27/EI= 2,18 kNm
M21= 1,333EI*3,27/EI= 4,36 kNm

M23= 1,111(3,27)= 3,63 kNm and
M32= 0,556(3,27)= 1,82 kNm.

The rotation spring at joint 2.

Fig.2.

The spring will alter the beam end moments at
joint 2 with MK21 and MK23 assume to the right.
On the joint as large as but opposite directed
thus to the left. Together the roatation spring
moment to thr left MK2= MK21 + MK23.

MK2= MS2 * UR2, spring constant MS2 in kNm/rad.

% A 2 v
N =& —=
For this beam is URA= (M*L)/(3EI) or

M= (3EI/L) * URA with 'spring'constant (3EI/L)
with which an idea of magnitude is given.

Fig.3.

X mom. joint 2= 0 or M21+M23+MK1 —-8= O or
0,667*URL +1,333*UR2 +1,111*UR2 +0, 556*UR3

+ MS1*UR2= 8
Suppose MSl= 1,2EI then follows (EI omitted)

0,667*UR1+(1,333+1,111+1,200)*UR2+0, 556*UR3= 8.

One equation remains.
3,644EI*UR2 =8 so that UR2= 2,19/EI.

Fig.4a en 4b.
Without and with rotation spring.

Without M21= 4,36 M23= 3,63 KkNm and
with M21= 2,92 M23= 2,43 kNm
Differences MK21= 1,44 MK23= 1,20 kNm

Spring moment
MK2= MK21+MK23= 1,44+1,20= 2,64 kNm

2 mom. joint 2=0 MK2 +M21+M23 -8,00= 0 ?
2,64 +2,92 +2,43 -8,00 = -0,01 is OK.
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Example.

Fig.1l.

The beam with overhanging part is simplified to
a single beam. The load at joint 2 due to the
concentrated load force of 5 kN is found by re-
solving 5 kN into a force of 5 kN at joint 2
plus a coupleof forces with a moment of

5%2,1= 10,5 kNm to the right, it is the joint
load moment of joint 2.

a2 _Jiy _Ji_ _15 _ JD___

L 2dm T 10,5 M
=]

Fig.2.

The joint load moments due to the uniformly
distributed load of 7 kN/m are
(1/12)*7*(4,90)72= 14,0 kNm, on joint 1

to the right, on joint 2 to the left.

The elements of member stiffness matrix S5.
= {EI/L= 4EI1/4,90= 0,816 x EI
E= 2EI/L= 2EI/4,90= 0,408 x EI

On the left represented in matrix form
f =585 * u.

The elements of £ in 85 * u = £ follow with
moment equilibrium of the joints.

Z mom. joint 1=0

M12-14,0=0 M12= 14,0 XkNm
Z mom. joint 2=0
M21 +14,0 -10,5 =0 M21= -3,5 kNm

Since the rotation of joint 1 is known, UR1=0,
is rotation UR2 the only unknown, follows
0,816EI*UR2= -3,5 = UR2= -4,29/EI rad

M12= 0,B816EI*0 +0,408EI*(-4,29/EI)= -1,75 kNm
M21= 0,408EI*0 +0,816EI*(-4,29/EI)= -3,50 kNm

Fig.3a.

The member end moments due to the joint rotati-
ons UR1l and UR2 alone are drawn with their real
directions.

Fig.3b.

The member end moments due to the load of 7 kN
alone.

Fig.3c.

The sum of 3a and 3b gives the final member end
moments.

Fig.4.

With 'forget-me-nots'. See page 97 .

The slope deflection, rotation, as assumed to
the right, the follows, see figure ,

UR3= 5*2,1%2/2EI-4,29/EI= 11,03/EI-4,29/EI=
6,74/EI, positive answer so as assumed to the
right.

Suppose displacement UV3 downward then follows
UvV3= 5%*2,1~3/3EI-(4,29/EI)*2,10

= 15,44/EI-9,01/EI= 6,43/EI positive ans-
wer so as assumed downward.
See example, same construction page éaf .
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4. Continuous beams over more than two supports
with vertical joint displacements and without
internal hinges between the supports.

Fig.1l.
Not the supports alone seen as jolnts but also
elsewhere places seen as joints.

Fig.2a.

In the figure the assumptions for the joint ro-
tations URA and URB are to the right, for the
member end moments MAB and MBA to the right and
for the vertical joint displacements UVA and
UVB downward. Here UVB is drawn larger than UVA
but one could have drawn UVA larger than UVB.

This drawn situation is the addition of four
separated cases, fig.2a, 2b, 2c and 2d.

Fig.2b.

First alone the displacement UVA of joint A
downward. At A and B no joint rotations. At A
and B arise moments MAl and MBl to the right
due to the deformation of the beam. Then at A
and B have to arise reactions FAl downward and
FB1 upward to make equilibrium possible with
the moments MA1 and MBI1.

With the formulas of page 57 then follow

MAl= (6*EI/L"2)*UVA and MBl= (6*EI/L"2)*UVA,

FAl= (12*EI/L~3)*UVA and FBl= (12*EI/L"3)*UVA.

Next the influence of joint rotation URA of
joint A to the right.

Fig.2c.

On page the beam end moments due to joint
rotation URA to the right were found. Now named
MA2 and MB2 instead of MAl and MBI1.

MAZ2= (4*EI/L)*URA en MB2= (2*EI/L)*URA.

Now also the beam end forces FA2 and FB2.

FA2= (6*EI/L"2)*URA and FB2= (6*EI/L"2)*URA.

Fig.2d.

Alone the displacement of joint B over UVB
downward. Joint A does not displace and there
are no joint rotations. From the deformation
follows the direction of the beam end moments
and from them the two beam end forces which
have to be in equilibrium with bot memnets.

Like with fig.2b follow with the formulas

MA3= (6*EI/L"2)*UVB and MB3= (6*EI/L"2)*UVB,

FA3= (12*EI/L~3)*UVB and FB3= (12*EI/L"3)*UVB.

Fig.Z2e.
Like fig.2c but mirrorred.

MA4= (2*EI/L)*URB and MB4= (4*EI/L)*URB.

Now also the beam end forces FA4 and FB4.

FAd= (6*EI/L"2)*URB and FB4= (6*EI/L"2)*URB.
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The final member end moments MAB and MBA, and
member end forces FAB and FBA of figure Za
consist of the addition of moments and forces
of the figures 2b, 2c¢, 2d and Z2e.

On page.36 the force vector of a member con-
sisted of MAB and MBA.

See £ = §5*u given on the left. (The order FAB,
MAB, FBA, MBA could gave been MAB, FAB, MBA,
FBA if just consistent applied.)

Determination of the elements of member stiff-
nes matrix S5.

FAB see figure 2a 1is assumed downward, then FAB
equals the sum of the forces downward minus the
sum of the forces upward.

FAB= FAl +FA2 +FA4 -FA3 and correct in order

FAB= FAl +FA2 —FA3 +FA4 1)

= (12*EI/L"~3)*UVA +(6*EI/L"2)*URA
~(12*EI/L"3) *UVB +(6*EI/L"2)*URB
MAB is assumed to the right, then MAB equals
the sum of moments to the right minus the sum
of moments to the left.

MAB= MA1l +MA2 +MA4 -MA3 and in correct order

MAB= MAl +MA2 -MA3 +MA4 2)

= (6*EI/L"2)*UVA +(4*EI/L)*URA
- (6*EI/L~2) *UVB +(2*EI/L)*URB

Similar for force FBA and moment MBA at member
end B.

FBA= FB3 —~FB1 —-FB2 —-FB4 or

FBA=-FBl1 -FB2 +FB3 —-FB4 3)

=-(12*EI/L"3)*UVA - (6*EI/L"2)*URA
+(12*EI/L"3)*UVB - (6*EI/L"2)*URB
MBA= MBl +MB2 +MB4 -MB3 or

MBA= MBl1 +MB2 -MB3 +MB4 4)

= (6*EI/L~2)*UVA +(2*EI/L)*URA
-(6*EI/L~2)*UVB +(4*EI/L)*URB

On the left the concerning elements are placed
in 85. One sees the symmetrie. Below the ele-
ments are replaced by letters A, B, D and E, a
few with a minus sign. Only four values have to
be calculated.

kend.

A=12*EI/L"3 B=6*EI/L"2 D=4*EI/L E=2*EI/L

On the left the dimensions of the elements of
£, S5 and u represented. An element of f equals
a row of of 85 times a column u.
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L is the lowest member end number and H
the highest member end number, L - A,
H - B. See the diagonal symmetrie.

Exchange of A and B.

Fig.3a.

A on the right and B on the left. Assumptions
like before, member end rotations YRA and URB
to the right, the figure fits to them, and
matching member end moments MAB and MBA to the
right, and member end forces FAB and FBA down-
ward.

Fig.3b.

To the displacement UVA alone belong the mo-
ments MAl and MB1 to the left. The member end
forces FAl and FBl are as large as but opposite
directed and form a couple of forces with a
moment to the right for equilibrium. With the
formulas of page then follow

MAl= (6*EI/L”~2)*UVA and MBl= (6*EI/L"2)*UVA,
FAl= (12*EI/L~3)*UVA and FBl= (12*EI/L"3)*UVA.

Fig.3c.

To a rotation URA belong the moments MA2 and
MB2 to the right. The forces FA2 and FB2 form a
couple to the left making equilibrium.

MA2= (4*EI/L)*URA and MB2= (2*EI/L)*URA,
FA2= (6*EI/L~2)*URA and FB2= (6*EI/L"2)*URA.

Fig.3d.

Like figure 3a but now only UVB with the mo-
ments MA3 and MB3 to the right and the forces
FA3 and FB3 making a couple to the left.

MA3= (6*EI/L~2)*UVB and MB3= (6*EI/L"2)*UVB,
FA3= (12*EI/L~3)*UVB and FB3= (12*EI/L"3)*UVB.

Fig.3e.

Finally the assumed slope deflection/rotation
URB to the right with matching moments MA4 and
MB4 and couple forces FA4 and FB4 with moment
to the left.

MA4= (2*EI/L)*URB and MB4= (4*EI/L)*URB,
FA4= (6*EI/L"2)*URB and FB4= (6*EI/L"2)*URB

FAB= FA1l —-FA2 -FA3 -FA4

= (12*EI/L”3)*UVA - (6*EI/L"2)*URA
- (12*EI/L"3)*UVB —(6*EI/L"2) *URB A-B -A-B

MAB=-MAl +MA2 +MA3 +MA4

=-(6*EI/L"2) *UVA +(4*EI/L)*URA

+(6*EI/L"2)*UVB +(2*EI/L)*URB -BD BE

FBA=-FBl1 +FB2 +FB3 +FB4

=—(12*¥EI/L"3) *UVA +(6*EI/L"2)*URA
(12*ETI/L~3)*UVB +(6*EI/L"2)*URB -A B A B

MBA=-MB1 +MB2 +MB3 +MB4

=— (6*EI/L"2)*UVA +(2*EI/L)*URA
+(6*EI/L~2) *UVB +(4*EI/L)*URB -BE BD
On the left both possible S5's are represented
by the letters with earlier found values
A=12*EI/L"3 B=6*EI/L"2 D=4*EI/L E=2*EI/L.
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Example.

lé,éu
Fig.1l.
%J = 23 4? If At the load force of 6 kN a joint 2 is assumed.
- £ 7 ¥ Then there are tow beams/members with lengths
, d,00 . 2, 50m | 2,00 m and 2,40 m. Joint 2 can displace hori-
! J top- ontally.
Fig. J = ¥

~ = — - — - Each member stiffness matrix S5 has 4 x 4 ele-

Fl2 150 150 -150 150 Uvl ments with values A, B, D and E with + or -, as
derived earlier.
M12 150 200 -150 100 UR1
= . A=12*EI/L"3 B=6*EI/L"2 D=4*EI/L E=2*EI/L
F21 -150 -150 150 -150 Uv2
member 1. — =
L¥21 150 100 -150 200 UR2 A=12EI/2,0073= 12EI/8,00= 1,50 EI A B ~-A B
x EI/100 851 = 6EI/2,0072= 6EI/4,00= 1,50 EI B D-B E
F23 87 104 -87 104 uv2 D=4EI/2,00= 2,00 EI -A -B A -B
M23 104 167 —-104 84 UR2 E=2EI/2,00= 1,00 EI B E-B D
F32 -87 -104 87 -104 uv3 Member 2.
A=12EI/2,4072= 12EI/13,82= 0,87 EI
M32 104 84 -104 167 UR3
b — — = = — B= 6EI/2,49"2= 6EI/5,76 = 1,04 EI
- -1 — D= 4EI/2,40= 1,67 EI E=2EI/2,40= 0,84 EI
150 150 -150 150 0 0 rﬂvl

UvVl, UR1l, UV3 and UR3 are known, prescribed,
150 200 -150 84 0 0 UR1 all zero. Two equations with unknowns UV2 and
UR2 remain.

-150 -150 237 -46 -87 104 gv2 — - - — — =
. 1 0 0 0 0 0 Uvil 0
150 100 -46 367 -104 84 UR2 0 1 0 0 0 Q UR1 0
0 0 -87 ~104 87 -104 uv3 0 0 237 -46 0 0 |[,|Uv2|= 6
0 0 -46 367 0 0 UR2 0
0 0 104 84 —-104 167 UR3
— - - -~ 0 0 0 0 1 0 uv3 0
ccC 0 0 0 0 0 1 UR3 0
x EI/100 ccC u f
/_ 3 The vertical member end forces are assumed
downward, so directed on the separated joints
F&I le ‘93 an directed upward.
Member 1. Hg.ﬂ. Fig.2
T vert. joint 2=0 F21+F23-6=0 F21+F23= 6
Fl2= EI(-1,50(2,59/EI)+1,50(0,33/EI))
= -3,89 +0,50 = -3,39 kN 2,37*UV2 -0,46*UR2 = 6
M12= -1,50(2,59) +1,00(0,33) -0,46*UV2 +3,67*UR2 = 0O from which follow
= -2,89 +0,33 = -3,56 kNm
Uv2= 2,.59/ET m and UR2= 0,33/EI rad.
/02 /2y, 355 313 — ——
'( :________3.) 2 ) Member 2.
l l T ] Fig.4.
F23= 0,87(2,59) +1,04(0,33)= 2,59 kN
F72 727 3,39 239 M23= 1,04(2,59) +1,67(0,33)= 3,24 kNm
Fg.3. /423 RES 3,24 257
F21= 1,50(2,59) -1,50(0,33) ( ) ('——_——')
= 3,89:-0,50 = 3,39 kN l;QJ £39 l ngy 35y1
M21= -1,50(2,59) +2,00(0,33) F32= -0,87(2,59) -1,04(0,33)= -2,59 kN
= -3,89 +0,66 = -3,23 kNm M32= 1,04(2,59) +0,84(0,33)= 2,97 kNm
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7“9/{//4» lﬁ'é/u/ Example.

£ = &7 For both members appli th N A B -A B
pplies e sa
} <50 m = 2 /0 L me member stiffness matrix S5 on B D -B E
J 2 the right, lowest member end num-
- = J ber A on the left, highest mem- -A -B A -B
L. ] 3 ber end number B on the right, L B E -B DJ
B =
2 F ) see page 4O .
1 2 3 4 Member 1 with L=4,90 m.
— - = —~ A= 12*EI/L~3= 12*EI/(4,90)73= 0,102 *EI
Fl2 1 102 250 -102 250 B= 6*EI/L"2= 6*EI/(4,90)"2= 0,250 *EI
M12 2 250 816 -250 408 D= 4*EI/L= 4*EI/4,90= 0,816 *EI
= E= 2*EI/L= 2*EI/4,90= 0,408 *EI
F21 3| -102 -250 102 -250
Member 2 with 1=2,10 m, simalar way.
M21 4 250 408 -250 816 A= 1,296 *EI B= 1,361 *EI
= — — ! D= 1,905 *EI E= 0,952 *EI

S51
M) Elements of force vector f are the joint load
2 forces and joint load moments.
l-)) ((-L> (-13 Fig.2.
Yo  I%,0 7793 M3 7 kN/m gives joint moments (page £4¢©) at joint
’ P 1 en 2, (1/12)*7*(4,90)"2= 14,0 kNm, and joint
v /7.2 7% J forces (1/2)*7*4,90= 17,2 kN.
ot T
_ 2 vert. joint 1=0 F12-17,2=0 F12= 17,2 kN
£F/2 r42 F4.2. T mom. joint 1=0  M12-14,0=0  M12= 14,0 kNm
3 4 = 6 ¥ vert. joint 2=0
[ 525 | 3| 1296 1361 -1296 1361 B F214F23-17,2=0 kN F21+F23= 17,2 kN
- - 2 mom. joint 2=0
M23 4| 1361 1905 -1361 952 M21+M23+14, 0=0 M21+M23= -~14,0 KkNm
F32 5 1-1296 -1361 1296 -1361 ¥ vert. joint 3=0 F32-5,0=0 F32= 5,0 kN
2 mom. joint 3=0 M32= 0 kNm
M32 6| 1361 952 -1361 1905
— - - . UV1l=0, UR1=0 and UV2=0, the concerning diagonal
852 elements are 1, rows and columns zero, and in
the force vector the values of the known dis-
1 2 3 4 5 6 placements.
- — The unknown 'displacements' are UR2, UV3 and
1 102 250 -102 250 . . UR3 which can be found with the remaining three
equations.
2 250 816 -250 408
- o - - = —
3| -102 -250 1398 1111 -1296 1361 1 0 © 0 0 ¢ uvi 0
0 1 0O 0 0 0 UR1 0
4 250 408 1111 2721 -1361 952
0 0 1 0 0 0 uvz 0
5 . 7 -1296 -1361 1296 -1361 0 0 0 2721 -1361 952 "| ur2 ~14,0
6 - . 1361 953 -1361 1905 0 0 0 -1361 1296 -1361 uv3 5,0
— - 0 0 O 953 -1361 1905 UR3 0
x EI/1000 cC == =L A= = — =
x EI/1000 cC u £
A check with 4th row of CC, witjout EI
and zero multiplications, UV1=0, UR1=0 EI{ 2,721*UR2 -1,361*UV3 +0,952*UR3)= -14,0
and UvV2=0.
EI(-1,361*UR2 +1,296*UV3 -1,361*UR3)= 5,0
M21+M23=
2,721*%UR2 —1,361*UV3 +0,952*UR3 = EI( 0,952*UR2 -1,361*UV3 +1,905*UR3)= 0
i
2,721(-4,28) -1,361(6,44) +0,952(6,74 = With computer Gauss then follow
-11,65 -8,76 +6,39 = 14,02 ~ 14,0 kNm ! UR2= -4,28/EI  UV3= 6,44/EI  UR3= 6,74/EI.
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Tl e

1/ 3] 2

v £ = &7

| 4,80 . 2,/0

] i
1/ 2,
/ 3
| —1 |
2 fgq. 3
1 2 5 6
_ = = -
F13 102 250 -102 250 | |UVL
M13 250 816 -250 408 | | URL
F31 -102 -250 102 -250| |UV3
M31 250 408 -250 816 | | UR3
s51
3 4 5 6
723 | 1296 -1361 ~1296 -1361] | uv2
M23 -1361 1905 1361 952 | UR2
F32 -1296 1361 1296 1361 |UV3
M32 -1361 952 1361 1905 | UR3
$52
1 2 3 4 5 6
1| 102 250 -102 250
2| 250 816 -250 408
3 1296 -1361 -1296 -1361
4 -1361 1905 1361 952
5|-102 -250 -1296 1361 1398 1111
6| 250 408 -1361 952 1111 2721
x EI/1000 cc

Elements of f before the alteration.
T vert. joint 1=0

F13-

Z mom.

M13-

z ve
F23-

2 mom.

17,2=0

joint 1=0
14,0=0

Tator
5=0

joint 2=0

joint 2=

¥ vert. joint 3=0

F31+

Zmom.

F32-17,2=0

joint 3=0

M31+M32+14, 0=0

F13= 17,2 kN
M13= 14,0 kNm
0
F23= 5,0 kN
14
M32= 0,0 kNm
F31+F32= 17,2 kN

M31+M32= -14,0 kNm

Fig.3.

The same construction of the preceding page
with a different order of the joint numbers,
1-3-2 instead of 1-2-3.

Member 1.

Like on the preceding page with on AB-AB
the left the lowest member end num- BD-BE
ber 1 and the highest member end -A-B A-B
number 3 on the right. See page 92 .. BE -BD
Staaf 2.

Mow the lowest member end number 2 A-B -A-B
eon the right, the highest member end -B D B E
number 3 on the left. -A B A B
See derivation of S5 page #3. -BE BD

The letter values for both S5's are equal, on-
ly the order is different. 552 of member 2 now
looks different.

A=12*EI/L"3 B=6*EI/L" 2

D=4*EI/L E=2*EI/L

On the left S51 and S52 are put in CC. Since
UV1l-0, UR1=0 and UV3=0 the three unknown uva,
UR2 and UR3 are left to be calculated.

Here below the three equations are visible.

[ 1 0 0 0 Q 0 ] _UVl— i 0 )
0 1 0O 0 0 0 UR1 0
0 0 1296 -1361 0 -1361 uvz 15!
0 0 -1361 1905 0 952 . UR2 ) 0
0 0 O 0 1 0 uv3 0
0 0 -1361 952 0 2721 UR3 I-_—14,'0
_x EI/1000 cc - u B f )

The elements of force vector f are found with

Y vert.=0 and Thor. =0 of the joints. They are
replaced by the given values of the prescribed

knowns.

See on the left the values of the elements of f
before the alteration of f here above.

ET( 1,296*UV2 -1,361*UR2 -1,361*UR3)= 5,0
EI(-1,361*UV2 +1,905*UR2 +0,952*UR3)}= 0,0
EI(-1,361*UV2 +0,952*UR2 +2,721*UR3= -14,0
With computer Gauss then follow

UvV2= 6,44/EI UR2= §,74/EI  UR3= -4,28/EI.
On the preceding pagewas found

Uv3= 6,44/EI UR3= 6,74/EI UR2= -4,28/EI

On page 4© the same construction with one mem-—
ber without joint displacement plus a separate
calculation of the overhanging member.

Uv3= 6,42/EI UR3= 6,74/EI UR2= -4,29/ET
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5. Continuocus beams over more than two supports
with vertical joint displacements and with mem-
ber ends not regarded as joints but as hinges.

Fig.1l.
Beam/member end A regarded as hinge, not as a
real joint.

Fig.2a.

Like figure 2a of page 4/ with the same as-
sumptions for UVA and UVB, member end moments
MAB and MBA and joint rotation URB.

The slope deflection HAB at A will be separate-
ly calculated after the other unknows have
become known.

Fig.2b.

Member end B is hold and A with the assumed
displacement UVA displaced downward. With the
caused deformation one sees that the moment MBl
is to the right. For equilibrium the drawn for-
ces FAl and FBl form a couple of forces to the
left. With the formulas on page ?}7 follow

MBl= (3*EI/L"2)*UVA and MA1=0,

and with the equations of equilibrium follow
the forces FAl and FB1

FAl= (3*EI/L"~3)*UVA and FBl= (3*EI/L~3)*UVA.

At A arises slope deflection HAl to the left,
HAl= (3/2*L))*UVA.

Now there is not the .case of an applied rota-
tion URA like on figure 2c¢_on page 41.
Therefore MA2, MB2, FA2 and FB2 are missing.

Fig.Z2c.

The member end on the right is hold and displa-
ced over UVB downward. The deformation of the
member causes a moment MB3 to the left and with
equilibrium then follow the forces FA3 and FB3
forming a couple of forces to the right.

MB3= (3*EI/L”2)*UVB and MA3=0

FA3= (3*EI/L"3)*UVB and FB3= (3*EI/L"3) *UVB.

At A arises slope deflection HA3 ‘to the right,
HA3= (3/(2*L))*UVA

Fig.2d.

Now rotation URB is applied as assumed to the
right. Then the deformaticn can arise only if
moment MB4 is to the right.

The formula gives URB= (MB4*L)/(3*EI) so that

MB4= (3*EI/L)*URB.

From equilibrium follows FA4 downward and FB4
upward.

FA4= (3*EI/L"2)*URB and FB4= (3*EI/L”2)*URB.

At A arises and angle half as large as URB,
HA4= URB/2 to the left.

(...all without sign conventions...)
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FFAB? AUVAW
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FBA UVB
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0 e 0 0
-3ET/L"3 0 3EI/L"3 -3EI/L"2
3EI/L"2 0 -3EI/L"2 3EI/L
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F A 0 -A B W
0 0 0 0
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lg [
il %y Je
i 14 0 14 83_
0 0 0 0
-14 0 14  -83
| 83 0 -83 500J
x EI/1000
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-A -B A -B
B E -B D
|1 |
1 .
[ s6 167 -s6 167._
167 667 -167 333
-56 -167 56 -167
| 167 333 -167 667_. 5_9.34(.

Next the elements of member stiffness matrix S5
can be determined by addition of forces and mo-
ments of the figures as shown on page %/ . Now
the second figure is missing because joint ro-
tation URA is missing, therefore

FA2=0, MA2=0, FB2=0, MB2=0 en HA2=0.

FAB= FAl +FA2 —-FA3 +FA4

= (3*EI/L"3)*UVA +0 *URA
- (3*EI/L~3)*UVB +(3*EI/L*2)*URB.

Member end moment on the left MA2=0 because of
the hinge, written out then follows the
equation

MAB= 0*UVA +0*URA +0*UVB +0*URB.
Next the third equation
and in correct order

FBA= FB2 +FB3 -FBl1 -FB4

FBA=-FBl +FB2 —~FB3 +FB4

=-(3*EI/L"3) *UVA +0 *URA

+(3*EI/L~3) *UVB —(3*EI/L"2)*URB and
Finally the fourth equation

MBA= MBl +MB2 -MB3 +MB4

= (3*EI/L"2)*UVA +0 *URA

- (3*EI/L~2)*UVB +(3*EI)/L)*URB

On the left the elements of 85 are in matrix
form given. There are three different values
represented with the follewing capitals
D=3*EI/L.

A=3*EI/L"3 B=3*EI/L"2

The separately slope deflection to be calcula-
ted at hinge A is HAB assumed direction to the
right. The sum of the angles of the figures is
HAB= BA2 +HA3 —-HAl -HA4 or

HAB=-HA1 +HA2 +HA3 —HA{

= —(3/(2*L))*UVA + O*URA
+(3/(2*L))*UVB - URB/2 or

HAR= 1,5* (UVB-UVA)/L ~URB/2.

Fig.3a.

A as hinge and B as joint.

A=3EI/L”*3= 0,014 B=3EI/L~2= 0,083
D=3EI/L= 0,500

Fig.3b.

A and B regarded as joints, then become, see

page 42, the elements of S5 with L=6 m,

A=12EI/L~3= 0,056 B=6EI/L"~2= 0,167

D=4EI/L= 0,667 E=2EI/L= 0,333

48



AA7ABY( [7R%) £y Plug
\ Ay N
LS~ ey B) MBI
l wes) |
\j
! V4 .
! T A 3a.
%4/( ; 2B/
FAI ; TFJ/
. 5y 36
T 7
M2 ( Lkl 482,

Y
B3
| Fag
i e,
i 3EI/L*3 3EI/L”2 -3EI/L"3 0 ]
3EI/L"~2 3EI/L -3EI/L"2 0
-3EI/L~3 -3EI/L"2 3EI/L"3 0
0 0 0 0
_FAB_ i A B —-A 0 i AUVA_
MAB B D -B 0 URA
FBA - ~-A -B A Q . UVvVR
MBA 0 Q 0 0 URB
- ; B B S5 o u h

Fig.3a.

Next member end B regarded as a hinge and A as
a real joint.

Order of the displacements to apply UVA, URA,
UVB. Not URB since B is a hinge. Slope deflec-
tion HBA is separately calculated.

Fig.3b
Due to displacement UVA arises at A due to the
deformation moment MAl to the right.

MAl= (3*EI/L~2)*UVA.

With the equilibrium equations follow

FAal= (3*EI/L"2)*UVA en FBl= (3*EI/L"~2)*UVA.

Angle HBl is HB1l=1,5*UVA/L.

Fig.3c.
Moment MA2 belongs to joint rotation URA.

MA2= (3*EI/L)*URA and the forces FA2 and FB2

which make equilibrium with MAZ2.

FA2= (3*EI/L"2)*URA and FB2= (3*EI/L"2) *URA.

Angle HB2 is HB2=URA/Z.
Fig.3d.
By displacement UVB arises by the deformation

at A a moment MB3 to the left.

MA3= (3*EI/L”2)*UVB and the forces

FA3= (3*EI/L"3)*UVB and FB3= (3*EI/L”3)*UVB.

There is no angle URB at B, no fourth case,
FA4=0, MA4=0, FB4=0 and MB4=0.

Addition of the figures 4b, 4c en 4d gives FAB,
MAB en FBA.
FAB= FAl +FA2 —-FA3 +FA4
(3*EI/L"3)*UVA + (3*EI/L"~2) *URA
-(3*EI/L”3) *UVB +0 *URB

MAB= MAl +MA2 -MA3 +MA4
(3*EI/L"2) *UVA + (3*EI/L) *URA
+(3*EI/L"~2) *UVB +0 *URB

FBA=-FBl -FB2 +FB3 + FB4
=—(3*EI/L"~3) *UVA + (3*EI/L"2)*URA
+(3*EI/L"3) *UVB +0 *URB

MBA= O*UVA + 0*URA + 0*UVB + 0*URB

On the left in matrixvorm, and the elements re-
presented with the capitals A, B and D.
D=3*EI/L

A=3*EI/L"3 B=3*EI/L"2

Slope deflection HBA at B assumed to the right,
HBA= -HB1 -HB2 +HB3 +HB4
= -1,5*UvAa/L -URA/2 +1,5*UVB/L + O*URB

HBA= 1,5* (UVB-UVA) /L —-URA/2
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Slope deflection H23 at member end 2
see page ,

menber 2,

!
H23= 1,5%(UVv3-Uv2)/3,00 -UR3/2=

of

= 1,5%(0-29,70/EI)/3,00 -0/2= -14,9/ET.

Example.

Fig.1l.
Joint 2 is assumed left of the hinge, short
stripe. This is one of three possibilities.

The joint load moments and joint load forces
are all zero except joint 2 with a vertical
joint load force of 9 KkN.

Member 1.

Both member end regarded as joints, the member
ends are rigidly connected with the joints.
Then the member stiffness matrix on the left
S51 of page 44 applies.

12*EI/L"3=
6*EI/L" 2=

12*EI/({2,5)"3= 0,768 *EIL
6*EI/(2,5)72= 0,960 *EI

= 4*EI/L=
E= 2*EI/L=

4*R1/2,5= 1,600 *EI
2*EI/2,5= 0,800 *EI

Member 2.
Member end 3 is a joint and left member end 2

is a hinge. Then stiffness matrix S52 of page
48 shown on the left applies.

A= 3*EI/L~3= 3*EI/(3,0)"3= 0,111 *EI
= 3*EI/L"~2= 3*EI/(3,0)72= 0,333 *EI
D= 3*EI/L = 3*EI/(3,0) = 1,000 *EI

Both member stiffness matrices S51 and 552 com-—
posed give construction stiffness matrix CC.

Since UV1l, UR1l, UV3 and UR3 are prescrbed and
zero, two equations with UV2 and UR2 remain to
be solved. If a prescribed 'displacement' not
zero then the concerning column of CC alters,

0,879*Uv2 -0, 960*UR2 9

-0,960*UV2 +1, 600*UR2 0 from which

uv2= 29,7/EI m and UR2= 17, 8/EI rad.
Member 1.
F12= EI(-0,768(29,7/EI) +0,960(17,8/EI))=

-22,81 +17,09= -5,72 kN

M12= EI(-0,960(29,7/EI) +0,800(17,8/EI})=

-28,54 +14,24= -14,30 kNm

F21= EI( 0,786(29,7/EI) —-0,960(17,8/EI))=
= 22,81 -17,09= 5,72 kN

M21= EI(-0,960(29,7/EI) +1,600)17,8/EI))=
= -28,51 +28,48= -0,03 1is O.

Member 2.

F23= 0,111¢(29,7)= 3,30 kN M23=0 kNm

F32= -0,111(29,7)= -3,30 kN

M32= 0,333(29,7)= 9,89 kNm
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A B -A B A -B 0
B D -B E -B D 0
-A -B A -B -A B 0
B E -B D L g o0 0
page page
2 310 o /3
z 2
4 5 6
F23 | 3 768 960 -768 960 uv2
M23 | 4 960 1600 -960 800 UR2
F32 | 5| -768 -960 768 -960 uv3
M32 | 6 960 800 -960 1600 UR3
x EI/1000 sS51
2 5 6
F13 |1 111 -333 -111 0 W Uvl
M13 [ 2 | =333 1000 3330 UR1
F31 | 5| -111 333 111 0 uv3
LM31 6 0 0 o 0 UR3
x EI/1000 S52
111 -333 . . -111 o —f uvl
-333 1000 333 0 UR1
768 960 -768 960 uve
960 1600 -960 800 UR2
-111 333 -768 -960 79 -960 uv3
0 0 960 800 -960 1600 UR3
L — — U ==
ccC
1 0 0 0 0 0 Uvl 0
0 1 0 0 0 0 UR1 0
0 0 il 0 0 © L uv2 9
0 0 0 1 0 0 UR2 0
0 O 0 0 879 -960 Uv3 0
0 0 0 0 -960 1600 UR3 0
Slope deflection H31 at member end 2 of

member 2,

see page 44,

H31= 1,5*(UV1-UV3)/3,00

= 1,5*%(0-29,

70/EI) /3,00

-UR1/2=

-0/2= -14,9/E1.

Example preceding page with number erder 2-3-1
instead of 1-2-3.

Fig.1l.
Joint 2 assumed left of the hinge. A vertical
joint load force of 9 kN.

Member 1.

The same stiffness matrix as on the preceding
page. Both member end regarded as real joints
with F23, M23, F32, M32, en UV2, UR2, UV3 and
UR3. Note the member end numbering.

Member 2.

Again the hinge on left end but different mem-
ber end numbering, with matrix S5 of page
with the same A, B and D.

A= 3*EI/L"3= 3*EI/(3,0)"3= 0,111 *EI
B= 3*EI/L"2= 3*EI/(3,0)"2= 0,333 *EI
D= 3*EI/L = 3*EI/(3,0) = 1,000 *EI

Matrix 852 of member 2 with hinge, with F13,
M13, F31, M31, and UVl1l, UR1, UV3 and UR3.

S51 and S52 composed give construction stiff-
ness matrix CC. For S51 and S52 row and column
numbers are written to show where in CC the
elements 'appear'.

Since UV1, UR1l, UV3 and UR3 are prescribed,
they are zero, two equations remain to be
solved.

0,879*UV3 -0,960*UR3 = 9
-0,960*UV3 +1,600*UR3 = 0 from which

Uv3= 29,7/EI m and UR3= 17,8/EI rad.

The member end forces and moments are

F23= -5,72 kN M23= -14,30 kNm
F32= 5,72 kN M32= 0 kNm
F13= -3,30 kN M13= 9,89 kNm
F31= 3,30 kN M31= 0 kNm
4,30
7P 2 g 3 / §”99
Ti;a 47?1 Li3v QJ;T
| i H

m ]

[i::?xxhﬁ“mu _,f~f*“"”ﬂjz:~1

<

2 3 3 7k
: ’
/7.8/e7 14,9/Ey £y 2.

-
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Example.

4 2 q 3¢ Fig.1.
4 /. &> 2 &7 ¢ This time joint 2 is assumed on the right in-
1 1 5o 5257 sFead of gn.the left of the hinge, see page .
1 ! : =4 Fé?-/ with the joint load for of 9 kN.
- Member 1.
A B -A 0 A B -A B With the member stiffness matrix of page
B D -B 0 B D -B E
-A -B A 0 -A -B A -B A= 3*EI/L"3= 3*EI/(2,5)73= 0,192 *EI
0 0 0 0 B E -B D B= 3*EI/L"2= 3*EI/(2,5)"2= 0,480 *EI
D= 3*EI/L = 3*EI/(2,5) = 1,200 *EI
page page
7 2 Member 2.
L ] 2, o 2 2 With the member stiffness matrix of page
1 2 3 4 A= 12*EI/L”~3= 12*EI/(3,0)"3= 0,444 *EI
= — - - B= 6*EI/L"2= 6*EI/(3,0)"2= 0,667 *EI
Fl12 | 1 192 480 -192 0 Uvl
D= 4*EI/L= 4*E1/3,0= 1,333 *EI
M12 | 2 480 1200 -480 0 UR1 E= 2*EI/L= 2*EI/3,0= 0,667 *EI
F21 | 3| -192 -480 192 0 uv2 The prescribed ‘'displacements' UV1, UR1l, UV3
and UR3, all zero, make two equation remain to
M21 | 4 0 0 Q 0 UR2 solve, EI omitted for convenience.
= — — - — 0,636%0UV2 +0,667*UR2= 9
x EI/1000 S51
3 4 5 6 0,667*UvV2 +1,333*UR2= 0 from which
rF23 3 444 667 444 667 uv2 uv2= 29,8/EI en UR2= -14,9/EI.
M23 | 4 667 1333 -667 667 UR2 Next the member end forces and member end mo-
= - % (I ments are calculated.
F32 | 5 | —444 -667 444 -667 uv3
Member 1.
M32 | 6 667 667 -667 1333 UR3
i = L A o Fl12= -0,192(29,8)= -5,72 kN
x EI/1000 852 M12= 0,480(29,8)= 1430 kNm
192 —480 -192 O uvl F21= 0,192(29,8)= 5,72 kN
M21= O KkNm
-480 1200 480 0 UR1
Member 2.
-192 480 636 667 —444 667 uv2
- e N F23= 0,444(293,8) +0,667(-14,9)
0 0 667 1333 -667 667 UR2 = 13,23 -9,94= 3,29 kN
M23= 0,667(29,8) +1,333(-14,9)
—-444 -667 444 -667 uv3 = 19,88 -19,86= 0,02 is 0 kNm
667 667 ~667 1333 UR3 F32=-0,444(29,8) -0,667(-14,9)
L 2t ks o= =-13,23 +9,94= -3,29 kN
cc M32= 0,667(29,8) +0,667(-14,9)
- o o = 19,88 -9,94= 9,94 kNm
1 0 0 0 0 0 uvl 0
o 1 0 Q 0 0 UR1 0 The reaction forces and moments are the member
end forces and moments here below drawn with
0 O 1 636 667 0 Jlov2 | = 9 their real directions.
0 O 0 667 1333 0 UR2 0 4
4,30, . l
oo 0o 0 1 0 uv3 0 i 2.4 3t )9'99
oo o o 0 1 UR3 0 T’l P1
4L d4 L - 572 a5 : Jo 329 J[ Ay.a.
Slope deflection H21 at member end 2 of Z vert.=0
member 1, 5ee page.g& ’ 5,72 -9,00 +3,2%9= 0,01 is 0.
H21= 1,5*(UV2-UV1)/2,5 -URLl/2= Y mom. A=0.
9*2,5 -3,29%5,5 +9,49 -14,30= 0,04 1is O

=1,5%(29,8-0)/2,5 -0/2= 17,9/EI (Rem. some roundings on the way ...)
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1 2’5 1 J'OM i
T i T e
f. /.
A B -A O A O -A B
B D -B O 0 0 0 0
-A -B A 0 -A 0 A -B
0o 0o o0 0 B 0 -B D
page page
11 2 2 3 |
/ 2
il 2 3 4
F12 | 1 [ 192 480 -192 0 UVl
M12 | 2 | 480 1200 ~-480 0 UR1
F21 | 3| =192 -480 192 0 Uv2
M21 | 4 0 o 0 0 UR2
x EI/1000 S51
3 4 5 6
F23 | 3| 111 0 -111 333 uv2
M23 | 4 0 0 0 0 UR2
F32 | 5| -111 0 111 -333 uv3
M32 | 6| 333 0 -333 1000 UR3
L — e — L. —
x EI/1000 852
192 -480 -192 0O UVl
-480 1200 480 O UR1
-192 480 303 0 -111 333 Uv2
Q 0 Q 0 0 0 UR2
111 0 111 -333 uv3
333 0 -333 1000 UR3
cc
1 Q 0 0 0 0 uvil Q
0 1 0o 0 0 O UR1 0
0 0 303 0 0 0 | |u2|=] 9
o 0 0 1 o0 0 UR2 0
o0 0 o0 o0 1 o uv3 0
0o 0 o o 0o 1 UR3 0
L J L 4 L

There is no UR2 because of the hinge,
then two slope deflections, H21 and

H23,

will be calculated separate

ly.

Example.

Fig.1l.

This time the hinge itself is wvertically loaded
with kN. A hinge is not a real joint, there is
no joint rotation UR2.

Member 1 with 1=2,5 m.

A= 3*EI/L"3= 3*EI/(2,5)"3= 0,192 *EI
B= 3*EI/L"2= 3*EI/(2,5)"72= 0,480 *EI
D= 3*EI/L = 3*EI/(2,5) = 1,200 *EI
Member 2 with IL=3,0 m,.

A= 3*EI/L~3= 3*EI/(3,0)"3= 0,111 *EI
B= 3*EI/L"2= 3*EI/(3,0)"2= 0,333 *EI
D= 3*EI/L = 3*EI/(3,0) = 1,000 *EI

With prescribed displacements UV1=0, UR1=0,
Uv3=0 and UR3=0 the construction matrix is
altered, four equations of no use.

By coinciding elements of both member matrices,
with many zeros, the fourth equation can be
missed as well, UR2 falls out. Thus only one
equation is left.

0,303*Uv2= 9 from which uv2= 29,7/EI.
Member 1 with slope deflection at member end 2,
H21= 1,5% (Uv2-Uvl) /L ~UR1/2
=1,5%(29,8/EI -0)/2,5 = 17,9/EI.

Member 2 with slope deflection at member end 2,
H23= 1,5* (UV3-UV2) /L -UR3/2

= 1,5%(0- 29,8/EI)/3,0 = -14,9/ET.

Member 1.

Calculation of the member end forces and mo-
ments F12, M12, F21 and M21 with help of S51.
Fl12= -0,129EI*29,7/EI= -5,70 kN

M12= 0,480(29,7)= 14,3 kNm
M21= 0(29,7)= 0 kNm

EI omitted 7
F21= 5,70 kN

Fig.2.
Y/
“:_’&i 4+ L 2
- - ﬁhﬁ%ﬁm“f::::a 29.7/%9
; 2.50 ' ,  2.50 |
T T T 1
H12= 14,3*2,50/3EI -(29,7/EI}/2,50=
11,9/E1 - 11,9/EI = 0,0
H21= 14,3*2,50/6EI +(29,7/EI)/2,50=
6,0/EI + 11,9/ = 17,9/EI
Applying the 'forget-me-nots'.
uv2= 5,70*2,50”~3/(3EI)= 29,7/EI ﬂ; 2
‘ EES
= 12 *2, i Iy= 17,
H21= 5,70%2,507~2/(2EI)= 17,8/EI J‘;]o

Or H21l= 1,5(UV2-UV1)/L-UR1l/2, see page

H21= 1,5(29,7/EI-0)/2,50-0/2= 17,8/EI.
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F12 47 0 -47 188 uvl
M12 0 0 0 0 UR1
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xEI/1000
M2
7 2
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/;2 2y
2 3
93 l 2 l M3
F23 JF32
F45.3.
Member 1. 7
F12= EI( 0,188(5,33/EI))= 1,00 kN
Ml2= EI( 0(5,33/EI))= 0,00 kNm

F21= ET(-0,188(5,33/EI))=-1,00 kN
M21= EI( 0,750(5,33/EI))= 4,00 kNm

Member 2

F23= EI( 0,188(5,33/EI))= 1,
)= 0

M23= EI( 0,750(5,33/EI)

F32= EI(-0,188(5,33/EI))=-1

M32= EI(

0(5,33/EI))= 4

Lﬁﬂ:

;/‘—\7‘\2)4’00

Loo v AdoI

8§00

00 kN
00 kNm

,00 kN
, 00 kNm

4'.09( /ﬂ_‘ )4',00 n/m

g2 5,00

3

00 2 3
M’T
400 L0

Fig4

Example.

Fig.1l.

Member ends 1 and 3 regarded as hinges so that
joint rotation UR2 is the only unknown.

Slope deflections, or member end rotations, are
separately calculated.

Member 1. Member 2.
A O0-A B A B-a 0 A=0,047 EI
0 0 0 O B D-B O B=0,188 EI
-A 0 A -B -A -B A O D=0,750 EI
B 0-B D 0O 0 0 ©

1=4,00 m A=3*EI/L"3 B=3*EI/L"2 D=3*EI/L

& 00 &Jm
M2y ( 2) ) P23
SR =2y, T IFJB
Joint 2.

Z mom.=0 M214+M23-8,00=0 M21+M23= 8,00 kNm

Further no joint load moments and joint load
forces, also not due to member loads.
And UV1=0, UV2=0 and UV3=0.

I 47 0 -47 188 . . 0
0 0 0 0 . . 0
-47 0 94 Q0 -47 0 0
188 0 0 1500 -188 0 . 8,00
. -47 -188 47 0 0
. 0 0 0 0 0
 x BI/1000 cc o £ )
i il 0 0 0 0 0 ] —UVl_ i 0 ]
0 1 0 0 0 0 UR1 0
0 0 1 0 0 0 1. ovz | 0
0 0 0 1500 0 0 UR2 8,00
0 0 0 0 1 0 Uv3 0
0 0 0 0 0 1 UR3 0
EI(1,500*UR2)= 8,00 UR2= 5,33/EI
Fig.4.

See page g7 for formulas.
H12=4,00%4,00/6EI= 2,67/EI to the left, and

H32= 2,67/EI to the left.

For joint rotation UR2, with H21 and H23 fol-
low H21=4,00*4,00/3EI= 5,33/EI to the right and
H23=4,00%4,00/3EI= 5,33/EI to the right like
was found, UR2= 5,33/EI.
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P = A
2 3
2 = Z
2 1
= = =
1 3
I 2 3,
= = =
1 1
Fig. 5.
/ 3 2
= = =
2 6
/ 2 t 2'
PN = =
2 4
R 3 2
o E JES
1 )
4 3, 2,
8 = =
1 4
- - 9.8,
2 /4 3
2 3, /.,
2 /1 2,
3 2, -,
Fig. 7
&
3 7, N 2.
£ sy = &y
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Joints and hinges, and joint numbering.

Fig.5.

The example of the preceding page has four pos-
sible cases with the joint numbering 1-2-3,
with assumptions for the member end 1 and 3,
joint or hinge.

The added underlined numbers at the concerning
member stiffness matrices belong to the members
here below. See the six possible member stiff-

ness matrices.

Six possible member stiffness matrices SS5!

Six possible S5's depending depending on the
joint and member numbering. And the place of
the lowest member end number L and the highest
member end number H.

A Bl -A B A " -A B A B| -A
B D| -B E = B D -B
-A -B A -B -A A -B -A -B s a
B E| -B D B A -B D
1 2 3 '
I R—— 3 | )
VA V.4 ya V3 L H

De 2 x 2 deelmatrices van de S5's hieronder met
verwisselde L en H zijn gespiegelde deelmatri-
ces van de S85's hierboven t.o.v. de diagonalen.

A -B| -A -B A -B| -A . A -A —-B

-B D B E -B D B

-A B A B -A B A . -A . A B

-B E B D & -B B D
4 5 6

H L V4 L by 4 VA

1 and 4 with
A=12EI/L~3 B=6EI/L"2 D=4EI/L E=2EI/L

and 6 with

A=3*EI/L"3

(LS
~
|w
~
|on

B=3EI/L~2 D=3EI/L
Fig.6.
Four possibilities with numbering 1-3-2.

Fig.7

With three (succesive) numbers there are six
arbitrary number combinations. Here are the
four remaing combinations given. Each of the
four has four possible joint/hinge combinations
like figure 5 and 6. All together for this con-
struction 6 x 4 = 24 possible cases all giving
the same results. Free to choose,

Fig.8.

One of the possibilities. Just one unknown URI,
also unknown H31 and H21 separately to be cal-
culated. Preceding page with

A=0,047 EI, B=0,188 EI, and D=0,750 EI.

See the concerning matrices 5 with 3-1 H-L, and
3 with 1-2 L-H. On the left construction matrix
CC with one equation remaining.

1,500EI*UR1= 8,00 so that URl= 5,33/EI, like
UR2= 5,33/EI of the preceding page.
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Example.

Fig.l.

Member end 1 of member 1 cannot be regarded as
a hinge because of the joint load moment of 7
kNm, so it is regarded as a real joint.

Member 1.

A=12EI/2,5073=0,768 EI AB-AB
B= 6EI/2,5072=0,960 EI B D-BE
D=4EI/2,50=1,600 EI -A-B A-B
E=2EI/2,50=0,800 EI BE-BD

MP12=(1/8)*8*2,50= 2,50 kNm MP21= 2,50 kNm
Member 2.

D=4EI/3,00=1,333 EI
E=2EI/3,00=0,667 EI

A=12EI/3,00"3=0,444 EI
B= 6EI/3,0072=0,667 EI

MP23=(9*1,75*1,25"2)/(3,0072)= 2,73 kNm
MP32=(9*1,25%1,75"2)/(3,0072)= 3,83 kNm

Determination of the elements of f.

Fig.2.

Joint 1. ¥ vert.=0 Fl2-4,00=0 F12= 4,00 kN
Y mom.=0 M12+7,00-2,50=0 M12=-4,50 kNm
Joint 2.

> vert.0 F21+F23-4,00-3,39=0 F21+F23= 7,39 kN
S mom.=0 M21+M23+2,50-2,73=0 M21+M23=-0,23 kNm

Joint 3. X vert=0. F32-5,61=0 ¥32= 5,61 kN
Z mom.=0. M32+3,83=0 M32=-3,83 kNm
I 768 960 -768 960 s . 17 4,00_
960 1600 -960 800 . : -4,50
-768 -960 1212 -293  -444 667 7,39
960 800 -293 2933 -667 667 0,23
-444 -667 444 -667 5,61
| - . 667 667 -667 1333 -3,83
x EI/1000 cC o £ B

The values of the given displacements UV1=0,
Uv2=0, UV3=0 and UR3=0 are put/appear in f s0
that with computer Gauss six equations will be
solved.

if! 0 0 0 0 0 uvl 0
0 1600 0 800 0 0 UR1 -4,50
0 0 il 0 0 0 uv2 0
0 800 0 2933 0 0 UR2 0,23
0 0 0 0 1 0 uv3 0
0 0 0 0 0 i UR3 0

EI(1,600*UR1 +0,800*UR2)= -4,50

FI(0,800*UR1l +2,933*UR2)= 0,23 from which

UR1l= -3,30/EI and UR2=0, 98/EI.
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