FAB_ _-A B -A B_ -UVAﬁ
MAB B D -B E URA
FBA B -A -B A -B UVB
MBA B E -B D URB
A 1 __jJ?
L #

C= PQ/ULY S= UV/ULX

]
FLly  Fyy’

L FlAX

FLYY
}5;. 3

6. Determination of member stiffness matrix S&
of a frame.

Fig.l

Starting point is the horizontal beam/member,
of which both member ends are rigidly connected
with the joints. Of which the member ends, and
joints, can displace only vertically and of
which the joints can rotate.

The relation between member end forces and mem-—
ber end moments and joint rotations was found
like shown on the left. With

A=12ET/L1~3, B=6EI/L1~2, D=4EI/Ll, E=2EI/L1.

Fig.2.

The member ends, joints, now do not only dis-
place vertically but also horizontally, the
components of UVA and UVB.

The horizontal beam of page 4/ is now drawn
under an angle with the assumptions for the
member end slope deflections, being the joint
rotations URA and URB, from now on URL and URH,
the member end displacements UVA and UVB per-
pendicular to the member axis, and

the member end forces FAB and FBA, and

the member end moments MAR and MBA, from now on
FLH, FHL, MLH and MHL.

Fig.3 and 2

The horizontal member end forces FLHX and FHLX
are assumed directed to the right, and the
vertical member end forces FLHY and FHLY are
assumed downward, and the

member end moments MLE and MHL to the right.
The first equation for member end A, is number
L, of the given member is.

FLH= A*UVA +B*URA —-A*UVB +B*URB. 1)

UVA consists of the componentsU LX en ULY.

Cos (h)=PQ/ULY or PQ=Cos(h)*ULY or PEQ=C*ULY.
Sin(h)=UV/ULX or UV=Sin(h)*ULX or UV=S*ULX.
With the figures follow

UVA= C*ULY -S*ULX or UVA= -S*ULX +C*ULY

and in similar way UVB= -S*UHX +C*UHY.

Put in equation 1) it gives

FLH= A(-S*ULX+C*ULY) +B*URL

-A(-S*UHX+C*UHY) +B*URH. 1Y)

Sin(h)= 'FLHX'/FLH or
'FLHX'=S8in (h) *FLH or 'FLHX'= S*FLH.

Member end forces FLHX and FLHY drawn with
their assumed directions.

FLHX and 'FLHX' are opposite directed, so

FLHX= -'FLHX' or FLHX= -S*FLH, is -S times 17).

FLHX= ~S( A(~S*ULX+C*ULY) +B*URL
-A(-S*UHX+C*UHY) +B*URH).

Then the first of six equations becomes

FLHX= A*S72*ULX —-A*S*C*ULY -B*S*URL

~-A*S~2*UHX +A*S*C*UHY —B*S*URH. (1)
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-
FLHX
FLHY
MLH
FHLX

FHLY

MHL

|Hh

—A*372

_B*S

85 for

R*C*2

R*S*C

~R*C”2

-R*S5*C

S5 for-deformation by

_FLHX_I i R*C"2+A*S"2 R*S*C-A*S*C -B*S -R*C"2-A*5"2 -R*3*C+A*S*C -B*S | —ULX_
FLHY R*S*C-A*S*C R*S"2+A*C 2 B*C —-R*S*C+A*S5*C —A*¥S"2-A*C"2 B*C ULX
MLH -B*S BE D B*S =BHE E GRL
FHLX B —R*C"2-A*S"2 —R*S*C+A*S*C B*S R*C 2+A*5"2 R*S*C-A*S*C B*S ) UHX
FHLY ~R*S*C+A*S*C -R*S"2-A*C"2 -B*C R*S*C-A*S*C R*S*2+A*C"2 <BElC UHY
MHL -B*S B*C E B*3S -B*C D URH

L o | o )

A= 12*EI/L1"3 B= 6*EI/L1"2 D= 4*EI/Ll E= 2*EI/L1 =EA/Ll C =Cos(h) S=Sin (h)

A*S~2

—-A*S*C

=B#®S

A*Z*C

r I I
ULX FLHX ULX
ULy FLHY ULy
URL 0 0
S5 = S5
UHX FHLX UHX
UHY FHLY UHY
Raall L ° L0
u
-A*S*C <-B*S <-A*S"2  RA*S*C -B*S
A*C"2  B*C  A*S*C -A*C"2  B*C
B*C D B*S -B*C E
A*S*C  B*S A*5"2 -R*S*C  B*S
-A*C~2 -B*C =-A*S*C  A*C"2 -B*C
B*C E B*S -B*C D
J
1 1
deformation by bending
R*3*C 0 -R*C"2 ~R*S*C OW
R*S"2 0 -R*S*C -R*S"2 0
0 0 0 0 0
~R*S*C 0 R*C"2 R*S*C 0
-R*S"2 0 RESEC R*S"2 0
0 0 0 0 0
tension/compress.

The second of the 6 equations, with FLHY.

FLH= A(-S*ULX+C*ULY) +B*URL

~A (-S*UHX+C*UHY) +B*URH ")
Cos{h)= 'FLHY'/FLH or
"FLHY'=Cos (h) *FLH or 'FLHXY'= C*FLH.

FLHY and 'FLHY' are equal directed, so

FLHY= 'FLHY' of FLHY= C*FLH, is C times 1').
FLHY= C{ A(-S*ULX+C*ULY) +B*URL

-A (-S*UHX+C*UHY) +B*URH). Then is
FLHY= -A*S*C*ULX +A*C"2*ULY B*C*URL

+A*S*C*UHX —-A*C"2*UHY B*C*URH. (2)

Next the third equation with moment MLH.
For the horizontal beam was found

also applica-
so that with

MLH= B*ULY +D*URL -B*UHY +E*URH
ble for the beam under angle h,

ULY= -S*ULX +C*ULY, preceding page, and
UHY= -S*UHX +C*UHY follows
MLH= B{( -S*ULX+C*ULY) +D*URL

-B{ —-S*UHX+C*UHY) +E*URH).
Then the third of 6 equations becomes
MLH= -B*S*ULX +B*C*ULY D*URL

+B*S*UHX -B*C*UHY E*URH. (3)
The second trio equations can be found in the
same way. On the left the the stiffness factors
are placed in stiffness matrix S5.

The member with hingy member ends is like a
truss member. The member ends are no real
joints and therefore no joint rotatioms,

and therefore are the third row and colummn,
the sixth row and column of S5 filled with
Zeros.

Deformation due to bending has no connection
with deformation due to tension/compression.
Therefore the elements of both matrices can be
added and arises the member stiffness matrix
shown here below.

and
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FLHX R*C*2+A*S"2 R*S*C-A*S*C 0 -R*C"2-A*5"2 -R*S*C+A*5*C -B*S ULX
FLHY R*S*C-A*S*C R*S"2+RA*CM2 0 -R*$*C+A*S*C ~A*SA2-A*CN2 B*C ULX
MLH 0 0 0 0 0 0 URL
FHLX —-R*C"2-A*5"2 ~R*S*C+A*S*C 0 R*C"2+A*S"2 R*S*C-A*S*C B*S UHX
FHLY —~R*S*C+A*S*C -R*S"2-A*C"2 0 R*S*C-A*S*C R*S*2+A*C"2 =B&E UHY
MHL -B*S B*C 0 B*S -B*C D URH
4 A
A= 3*EI/L1"3 B= 3*EI/L172 D= *ET/L1 R=EA/L1 C =Cos(h) S=Sin (h)

If member end with the lowest member end number L is a hinge and member end with the high-
est member end number H a rael joint then there will be a joint rotation URH but no joint
roptation URL. The concerning third row and third column are filled with zeros.

—FLHX_ i R*CM2+A*S"2 R*S*C-A*S*C -B*S -R*C"2-A*S"2 -R*S*C+A*S*C 0 i #ULX_
FLHY R*S*C-A*S*C R*S"2+A*CH2 BEE —R*S*C+A*S*C -A*S"2-A*C"2 0 ULX
MLH -B*S B*C D B*S SBEC 0 URL
FHLX -R*C~2-A*3"2 ~-R*S*C+A*S*C B*S R*CA2+A*S”2 R*¥S*C-A*3*C 0 UHX
FHLY —-R*S*C+A*S*C —R*S"2-A*C"2 -B*C R*S*C-A*S*C R*S7"2+A*C 2 0 UHY
MHL 0 0 0 0 0 0 URH

L B I S

L 7
A= 12*EI/L1"3 B= 6*EI/L1"2 D= 4*EI/Ll E= 2*EI/L1l R=EA/L1 C =Cos(h) §=Sin(h)

If member end H is a hinge and member end L a real joint then there is a joint rotation URL
but no joint rotation URH. The concerning sixth row and sixth column are filled with zeros.
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Fig.3
Al A2 A3 |-Al1 -a2 A3
A2 A4 AS | -A2 -Ad4 A5
A3 A5 D | -A3 -AS E
-Al -A2 -A3 Al A2 -A3
-A2 -A4 -A5 A2 A4 -A5
A3 A5 E | -A3 -A5 D
A= 12EI/L~3
B= 6EI/L"3 L\l
D= 4EI/L
B= 2EI/L ¥  pig.a.
Al A2 . | -a1 -az A3
A2 A4 . | -a2 -a4 as
-A1 -A2 Al A2 -A3
-A2 -4 . A2 A4 -AS5
A3 A5 . | -a3 -as D
A= 3EI/L"3 Z
B= 3EI/L"2
D= 3EI/L #  Fig.s.
Al A2 A3 |-Al -A2 :
A2 A4 A5 | -A2 -n4
A3 A5 D |-a3 -a5 .
-Al -A2 -A3 Al A2 .
-A2 -A4 -A5 A2 A4
A= 3EI/L"3 n
B= 3EI/L"2 _
D= 3EI/L %  Fig.6.
RC*2 RSC . | -RC*2 -RSC
RSC  RS"2 -RSC -RS"2
-RC*2 -RSC . RC”2 RSC
-RSC =RS"2 RSC  RS"2
=EA/L \
C=D1/1L1 2
S=p2/1L1 7  Fig.7.

Fig.3.

Member end I. with coordinates X1 (L) and Y1 (L)
and member end H with X1 (H) and Y1 (H).

The member ends are rigidly connected with the
joints indicated with the short little stripes
at the member ends.

D1=X1(H)-X1(L) and D2=Y1(H)-Y1(L).

Staaflengte L1=Sqr(D172+D2"2).

C=cos (h) Cc=D1/L1 and S=Sin(h) S=D2/L1.
FLHX Al A2 A3 -Al -A2 A3 ULX
FLHY A2 A4 AS -A2 -A4 A5 ULY
MLH A3 A5 D -A3 -A5 E URL
FHLX -Al -A2 -A3 Al A2 -A3 UHX
FHLY -A2 -RA4 -AS5 A2 A4 -AS UHY
MHL A3 A5 E -A3 -A5 D URH

L ] L I T % E

£ 55 u

Fig.4.

The elements of S5 are represented with Al, A2,
A3, A4 and A5, with a mius sign - if applica-
ble.

Al= R*C"2 +A*S§"2, A2= R*S*C -A*S*C,

A3= -B*S, A4= R*S”2 +A*C"2, A5= B*C.

For the case if both member ends are rigidly
connected with the joints apply

A=12*EI/L"3 B=6*EI/L"2 D=4*EI/L E=2*EI/L.

Fig.5 en 6.

One of both member ends is hingy connected with
the joint, or, is a hinge.

The same formulas for Al to A5 apply but be-
cause of the member end hinge now

D=3*EI/L.

A=3*EI/L"3 B=3*EI/L"2

Fig.5.

Member end L a hinge. This member has no joint

1, then there is no unknown joint rotation URL.
See £ = 85 u here above. The converning row and
column are filled with zeros, third row and

third column.

Fig.6.

Member end H a hinge. There is no unknown joint
rotation URH, the sixth row and sixth column
are filled with zeros.

Fig.7.

Both member ends a hinge. Then the formulas for
the elements are like those of a truss member,
R*C*2, R*S*C etc.

If L. and H are exchanged then the same conside-
rations, start matrix in accordance with the
assumptions is always the matrix of figure 4.

C and S alter depending on the coordinates and
determining also the elements of 35.
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Member 1.

R='EA/L'= EA/2,92= 0,342 EA
=(0,342)50EI= 17,1 ET

A=12*EI/L"3= 12*EI/(2,9273)= 0,482 *EI
B= 6*EI/L"2= 6&*EI/(2,92"2)= 0,704 *EI

D= 4*EI/L= 4*E1/2,92= 1,370 *EI
E= 2*EI/L= 2*EI/2,92= 0,685 *EI

Member 2.

D1=X1(3)-X1(2)= 4,5-1,5= 3,0 m
D2=Y1(3)=Y1(2)= 0,0-1,0=-1,0 m
L1=8qr(3,072+(-1,0)"2)= 3,16 m
c=3,0/3,16= 0,949 $=-1,0/3,16=-0,316

R='EA/L'= EA/3,16= 0,316 EA EA=50ET

R=(0,316)50EI= 15,8 EI

=12*EI/L~3= 12*EI/(3,16"3)= 0,380 *EI
6*EI/L"2= 6*EI/(3,16"2)= 0,601 *EI
= 4*E1/1= 4*EI/3,16= 1,266 *EI
E= 2*EI/L= 2*EI/3,16= 0,633 *EI

7

With the formulas for Al, A2, A3, A4
and A5 like calculated on the right.
Al= 14,270 *EI A2= 2,624 *EI
A3= 0,190 *EI Ad= 1,920 *EI

A= 0,570 *EI

Joint loads of joint 2 and 3 due to
member load force of 15 kN.

5,93 b

With the formulas page follow the for-
ces 7,50 kN and moments 5,93 KNm.

These forces resolved into horizeontal
and vertical components give on joint 2
and 3 (7,5/3,16)*3,0= 7,12 kN downward
and (7,5*/3,16)*1,0=2,37 kN to the
right, see next page.

Example.

Fig.1l.
Two members and three joints. Both members with
bending stiffness EI, strain siffness EA=50ET.

X1(1)= 0,0 X1(2)= 1,5 X1(3)= 4,5 m
Yi(1)= 3,5 Yl(2)= 1,0 Y¥1(3)= 0,0 m
Member 1. D1=X1(H)-X1(L)= 1,5-0,0= 1,5 m
D2=Y1(H)-Y1(L)= 1,0-3,5=-2,5m
L1=Sqr(1,5%2+(-2,5)"2)= Sqr(8,5)= 2,92 m

c=D1/L1= 1,5/2,92= 0,514
S=D2/L1=-2,5/2,92=-0,856

Al= R*C"2 +A*3"2=
= 17,1EI*(0,514~2) +0,482EI*(-0,856"2)
= 4,518EI +0,353EI= 4,871 *EI
A2= R*S*C-A*S*C=
= 17,1EI(-0,856) (0,514)-0,482EI(-0,856) (0,514)
=-7,524EI +0,212EI= -7,312 *EI

A3=-B*S =-0,704EI*(-0,856)= 0,603 *EI
D4= R*S"2 +A*C"2=

= 17,1EI*(-0,856"2) +0,482EI*(0,514"2)
12,530EI +0,127EI= 12,657 *EI
A5= B*C= 0,704EI*(0,514)= 0,362 *EI

1 2 3 4 5 6
il 4871 -~-7312 603 | —4871 7312 603
2 | -7312 12657 362 7312 -12657 362

3 603 362 1370 -603 -362 685

4 | -4871 7312 -603 4871 -7312 -603

5 7312 -12657 -362 | -7312 12660 -362

6 603 362 685 -603 -362 1370

x EI/1000 s51

4 5 6 7 8 9

4 14267 -4624 190 | —-14267 4624 190

5 -4624 1920 70 4624 -1920 570

6 190 570 1266 -190 -570 633

7| -14267 4624 -190 14267 -4624 -190
=570

8 4624 -1920 -4624 1920 -570

9 190 570 633 -190 -570 1266
1 -

x EI/1000 552

Fl12X Ulx F23X Uz2x

F12Y uly F23Y U2y

M12 UR1 M23 UR2

= §51 = 552

F21X u2x F32X U3x

F21Y U2Y F32Y U3y

M21 LURZ M32 UR3
member 1 member 2
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Fig.3.

The separated members 1 and 2 with the
on the member ends acting forces and
moments with their assumed directions.

Fig.4.

On separated joint 2 act member end
forces as large as but opposite direc-
ted, the force of 7,12 kN downward,
2,37 kN to the right and the moment of
5,93 kNm to the right, due to the mem-
ber load of 15 kN.

On the separated joint 3 act 7,12 kN
downward, 2,37 kN to the right and 5,93
kNm to the left.

/2
L 503
23z 12 F23X
rax /% -
S T
2y 5.4,

F12X calculated right bottom. Further
with EI omitted.

Fl2Y= 7,312(0,93)-12,657(1,22)
+0,602(2,30)
= 6,80 -15,44 +0,83= -7,81 kN

M12=-0,603(0,93)~-0,362(1,22)
+0,685(2,30)
=-0,56 -0,44 +1,58= 0,58 kNm

F21X=-5,78 kN F21Y= 7,51 kN
M21= 2,15 kNm

ZE7 [ 25
% ‘_d-,';zé’ P
f
528
0,5014:».\ 17;8/ @ L)

Forces and moments drawn with their
real directions.

Both member matrices S5 form together construc-
tion matrix CC. Three joints and each joint
with three unknowns is 3 x 3 = 9 equations.

The 'displacements’' UX1, UYl, URLl, UX3, UY3 and
UR3 are prescribed, known, all zero. The
concerning rows and columns of CC are filled
with zeros and the elements on the main diago-
nal are made 1. Three unknowns remain, UXZ2, Uy2
and UR2, three equations to solve.

Underlined pairs of elements of S51 and S52 are

added, like

14267 +7871= 19138, -4624 -7312= -11936,
190 -602= -412, etc.

F21X+F23X 19138 -11936 —413“ UX2
FZ1Y+F23Y | = -11936 14580 208 |+ | UY2
M12+M23 -413 208 2636 UR2
£ cc u
When UX2, UY2 and UR2 are known the elements of

f can be calculated. UX2, UY2 and UR2 are still
unknown.

19138 -11936 -413 Ux2 2,37
-11936 14580 208 || UY2 | = 7,12

-413 208 2636 UR2 5,93

x EI/1000 - u £

The calculation of the elements of £, the joint
loads as follows.
% hor. joint 2 =0

F21X+F23X -2,37 =0 F21X+F23X= 2,37 kN
T vert. joint 2 =0

F21Y+F23Y -7,12 =0 F21Y+F23Yy= 7,12 kN
¥ mom. joint 2 =0

M21+M23 -5,93 =0 M21+M23= 5,93 kNm

The equations written out, without ET.
19,141*UX2 -11,942*UY2 -0,413*UR2 = 2,37
-11,936*UX2 +14.580*UY2 +0,208*UR2 = 7,12
-0,413*UR2 +0,208*UY2 +2,636*UR2 = 5,93
With computer Gauss follow

UX2= 0.93/8I, UY2= 1,22/EI, UR2= 2,30/EI.

Fig. 2 en 5.

Calculation of F12X of member end 1, the second
trio elements of the first row of S51 times
respectively UX2, UY2 and URZ.

F12X= EI (-4,871*UX2 +7,312*UY2 +0,603*UR2)
= EI(—4,871*0,93+7,312*l,22+0,603*2,30)/EI
-4,53 +8,92 +1,39 = 5,78 kN

A positve answer, so as assumd directed to the
right.
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5,8
{(0,93/EI)/3,16)*3,00= 0,883/EI and
((1,22/81)/3,16)*1,00= 0,386/EI.

The member shortens 0,497/EI.

UX2= 0.93/EI, Uy2= 1,22/EI, UR2= 2,30/EI.

Fig. 3 and 6a.

The member end forces and moments of member 2
due to the displacements UlX, UlY, UR1, U2X,
U2Y and UR2 alone are calculated here below
with help of member stiffness matrix 8552, see

page

F23X is the first trio elements of the first

row of 852 times resp. U2X, U2Y and UR2.

EI is omitted in the calculation.

F23X= 14,267 (0,93) —4,624(1,22) +0,190(2,30)
= 13,27 -5,64 +0,44 = 8,07 kN

F23Y is the first trio elementsnof the second

row of 852 times resp. UR2, U2Y and UR2.

F23Y= -4,624(0,93) +1,920(1,22) +0,570(2,30)
= -4,30 +2,34 +1,31 = -0,65 kN

M23 is the first trio nelements of the third

row of S52 times resp. U2X, U2Y and UR2.

M23= 0,190(0,93) +0,570(1,22) +1,266(2,30)
= 0,18 +0,70 +2,81 = 3,79 kNm

F32X and F32Y as large as but opposite to resp.
F32X= -8,07 kN en F32Y= 0,65 kN.

M32 is the first trio elements of the sixth row
of S$52 times resp. U2X, U2Y and UR2.
M32= 0,1%0(0,93) +0,570(1,22) +0,633(2,30)
= 0,18 +0,70 +1,96 = 2,34 kNm

The member end forces and member end moments
are drawn with their real directions.

Fig. 2 and 6b.

Member end forces and moments due to the member
loads alone. The components of the forces are
calculated for figure 2.

Fig. 6c.
The final member end forces and moments as the
addition of the figures 6a and 6b.

Fig.7.

Calculation of member end force F23x at member
end 2. For that purpose 5,70 kN and 7,77 kN are
resolved perpedicular to and alog the member
axis.

(5,70/3,16)*3,00= 5,41 kN

(7,77/3,16)*1,00= 2,46 kN

Both directed like the member axis, the forces
push on member end 2, 5,41+2,46= 7,87 kN.

The force of 15 kN is perpendicular to the mem-
ber so that the components of the member end
forces at member end 3 give a force as large as
opposite directed to the x axis, thus also a
compression force. (Is 9,91-2,05= 7,86 kN.)

Fig.8.

The displacements UX2=0,93/EI and UY2=1,22/EI
can be resolved perpendicular to and along the
member axis. Joint 3 does not displace.

The member shortens 0,497/EI.

AL='FL/EA' or
0,497/EI=F*3,16/50ELI so that F=7,86 kN like
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Al A2 A3 |-Al -A2 A3
A2 A4 A5 | -A2 -A4 A5
A3 A5 D [-A3 -A5 E
-al -a2 -A3 | Al A2 -A3
-A2 -A4 -A5 | A2 A4 -AS
A3 A5 E |-A3 -A5 D a
L i £rs.
Al *» o+ |-Al % *W -
* B4 AS| * -Ad AS L &
* A5 D| * -A5 E —
4
__Al * * Al * *
* 4 -AS | * B4 -BS L
* a5 E| *-A5S D]
L oz
Al * A3|-Al * A3
T Y I VR
A3 * D|-A3 * E
-a1 * -A3| Al * -A3
*-A4 < | * A4 »
A3 * E|-B3 * D c=0 §<>0
L 4 ¥ Emps

Carrying out a check calculation with help of
the final results of the calculations. Determi-
nation of slope deflections at the member ends
with the formulas of page 22

See fig.6c.

Fig.9%a.

Member end 2 with slope deflection
§,27%3,16/6EI= 4,36/EI and
member end 3 with slope deflection
8,27*3,16/3EI= 8,71/EI.

Fig.9b.
Member end 2 with2,14*3,16/3EI= 2,25/EI and
member end 3 with2,14*3,16/6EI= 1,13/EI.

Fig.9c.

Load of 15 kN in the middle, at both ends aris
slope deflections

15*%(3,16"2) /16EI= 9,36/EI.

Fig.9d.

The slope deflection of both member ends due to
de member end displacements perpendicular to
the member axis alone. At member end 3 zero.

The displacement components of U2X= 0,93/EI and
U2y= 1,22/EI are, see fig.8,

({0,93/EI)/3,16)*1,00= 0,258/EI and
((1,22/EI)/3,16)*3,00= 1,158/EI.

Both with same direction, so
0,258/EI +1,158/EI= 1,416/EI.

The slope deflection is
(1,416/E1)/3,16= 0,45/EI.

The slope deflection, or member end rotation,
of member end 3 must be zero, elements times
1/£I, 8,71 +1,13 -9,36 -0,45= 0,03 is 0! OK

Is the angle at member end 2 equal UR2=2,30/EI
to the right?
9,36 -4,36 -2,25 -0,45= 9,36 -6,95= 2,30 ! OK

55 and horizontal and vertical members.

Fig.l, 2 and 3.
The member ends are rigidly connected with the
joints, the member ends are joints.

Al= R*C"2 +A*§"2, A2= R*S*C —A*S*C,

A3= -B*S§, A4= R*8"2 +A*C"2, AS5= B*C.

Horizontal members. Vertical members.

D1=X1 (H)-X1 (L) <>0 D1=X1 (H)-X1(L)= 0
D2=Y1 (H)-Y1(L) =0 D2=Y1 (H)-Y1(L)<>0
C=D1/L1<>0 C=D1/L1l= 0
S=D2/L1 =0 S=D2/L.1<>0

With help of the formulas one finds the ele-
ments of S5 which are zero.

(Members with a hinge, then more (sometimes co-
inciding ) zeros, see page 54,58.)
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Member 1. 52

R='EA/L'= EA/2,92= 0,342 EA
R=(0,342)50EI= 17,1 EI

Member end 1 is a hinge.
A= 3*EI/L”~3= 3*EI/(2,92"3)= 0,120 *EI

B= 3*EI/L"2= 3*EI/(2,9272)= 0,352 *EI
D= 3*EI/L= 3*EI/2,92= 1,027 *EI
Member 2.

D1=X1(3)-X1(2)= ==

1,
D2=Y1(3)=Y1(2)= 1,
Ll=Sqr(—3,0A2+l,O“
R='EA/L'= EA/3,16= 0,316 EA EA=50ET
R=(0,316)50EI= 15,8 EI

A=12*EI/L"~3= 12*EI/(3,16"3)= 0,380 *EI
B= 6*EI/L*2= 6*EI/(3,16"2)= 0,601 *EI

D= 4*EI/L= 4*EI/3,16= 1,266 *EI
E= 2*EI/L= 2*EI/3,16= 0,633 *EI

With the formulas for Al, A2, A3, A4
and A5 follow

Al= 14,267 *EI, A2= 2,624 *EI,
A3= 0,190 *EI, A4= 1,920 *EI
A5= 0,570 *EI which £ill S52.

and

Member 2 like on page with both mem-—
ber ends rigidly connected with the
joints. The joint load forces and
moments due to 15 kN are like calcula-
ted there, now on joint 3 instead of

joint 2, 7,12 kN downward, 2,37 kN to
the right.
F13X U1lx F23X U2x
F13Y Uly F23Y U2y
M13 UR1 M23 UR2
= 8§51 = §52
F31X U3X F32X U3Xx
F31Y U3y F32Y U3y
M31 LURB M32 UR3
member 1 member 2

Because of the different joint numbe-
ring, 1-3-2 i.s.o. 1-2-3, £ =255 u
looks different than on page é/ e

Example.

Fig.1.

Construction size like on page 6/ , now with

an internal hinge.

stiffness EI and strain stiffness EA=50ET.

Irreqgular joint numbering. deliberate.

Member 1 with L=1 and H=3, member 2 L=2, H=3.
Member end 3 of member 1 is a hinge,
member end 3 of member 2 is a 'real'joint.
X1(1)= 0,0 1(2)= 4 Xl(3) ,5 m
Yi(1l)= 3,5 1(2)=20 1(3)=1,0m
Member 1. D1=X1(3)-X1(1)= 1,5-0,0= 1,5 m
D2=Y1(3)-Y1(1)= 1,0-3,5=-2,5 m

11=8qgr(1,5"2+(-2,5%2))= 2,92 m
Cc=D1/11= 1,5/2,92= 0,514
S=D2/11=-2,5/2,92=-0,856
Al= R*C"2 +A*S5"2

=17,1EI*(0,514~2) +0,120EI*(-0,856"2)

= 4,518EI +0,088EI= 4,606 *EI
A2= R*3$*C —-A*S*C

=17,1EI (-0, 856) (0,514)~0,120ET (-0, 856) (0,514)

=-7,524EI +0,053EI= -7,471 *EI

A3=-B*S =-0,352EI(-0,856)= 0,301 *EI
Ad= R*S"2 +A*C"2
=17,1EI*(-0,856"2) +0,120EI*(0,514"2)
=12,530EI =0,032EI= 12,562 *EI
A5= B*C= 0,352EI(0,514)= 0,181 *EI

Both members same beding

T

At the highest member end number H=3 a hinge,

then sixth row and sixth column of 55 filled
with zeros, see page
1 2 3 7 8 9
1 [ 4606 -7471 301 | —4606 7471 0 ]
2| -7471 12562 181 | -7471 -12562 0
3 301 181 1027 ~301 -181 0
7| -4606 7471 -301 | 4606 -7471 O
8 7471 -12562 -181 | 7471 12562 0
9 0 0 0 0 0 0
B x EI/1000 s$51 )
4 5 6 7 8 9
4 i 14267 -4624 -190 | -14267 4624 —190_
5 -4624 1920 -570 4624 -1920 =570
6 -190 -570 1266 190 570 633
7| 14267 4624 190 14267 -4624 190
8 4624 -1920 570 -4624 1920 570
9 -190 -570 633 190 570 1266
- x EI/1000 852 B



F3/y ~<$%'. 4¥Z7l
L) 73;/:( 37,5
| 1
3K | 345 )
)ﬂ;\l’r@}’ 0#0\15;97 Fig.2.

The member end forces and moments of
member 1 with help of 851 of the prese-
ding page, EI omitted.

F13X=-4,606*UX3  +7,471*UY3
=-4,606(0,63) +7,471(0,85)
=-2,90 + 6,35 = 3,45 kN

F13Y= 7,471(0,63) -12,562(0,85)
= 4,71 - 10,68= -5,97 kN

M13=-0,301(0,83) -0,181(0,85)
=-0,25 — 0,15 = -0,40 kNm

Member 1 without member loads, then are
F31X and F31Y as large as but opposite
directed.

F31X=-3,45 kN en F31y= 5,97 KkN.

M31= 0(0,63) +0(0,85)= 0 kNm

z/2
1 1 593
2| N

Xl 2,32
232 3 =

9,93 AN

#/2 ’+_ Fy.3q.
1L12
* 3,26
I
e —
586 3 2
.5',93\1 102 77936
89,24
14124 1 9,49
)Y
&23
349 3
Téloo {—7\;,3&

Fig.3c is the addition of figure 3a and
3b. The member end forces and moments
are the final fortces and moments. The
moment at member end 3 is 0 kNm, joint
3 is a hinge.

UxXl, UYl, UR1l, UX2, UY2 and UR2 are known now,
atre all zero, UX3, UY3 and UR3 are calcula-
ted.

The in constructionmatrix CC coinciding ele-—
ments of S51 and S$52 are added. For exaxmple
the concerning elements of the third row.

4606 +14267= 18873 -7471 -4624= -12095

0 +190 = 130 Etc.
F31%4+F32X 18873 —-12095 190 UX3
F31Y+F32Y | = | -12095 14482 570 |+ | UY3
M31+M32 190 570 1266 UR3
£ cc u

There are three equations to solve.

18873 -12095 190 | | UX3 2,37
-12095 14482 570 |-|UY3 |=| 7,12
190 570 1266 | | UR3 5,93

x EI/1000 u . £ i

The elements of £ follow with the equilibrium
equations for joint 3 like on page 62 .

The equations written out, without EI.
19,138*UX3 -12,095*UY3 +0,190*UR3= 2,37
~-12,095*UX3 +14,482*UY3 +0,570*UR3= 7,12
0,190*UX3 +0,570*UY3 +1,266*UR3= 5,93
With computer Gauss follow
UY3= 0,85/EI,

UX3= 0,63/EI, UR3= 4,21/EI.

Fig.3a.
The member end forces and moments due to the
member load of 15 kN like fig.6b of page 63 .

Fig.3b

The member end forces and moments of member 2
due to the displacements alone with help of ma-
trix S52.

F23%X= -14,267(0,63) +4,624(0,85) -0,190(4,21)
= -8,99 +3,93 -0,80= -5,86 kN

4,624(0,63) -1,920(0,85) -0,570(4,21)
2,91 -1,63 -2,40= -1,12 kN

F23Y=

M23= 0,190(0,63) +0,570(0,85) +0,633(4,21)
0,12 +0,48 +2,66= 3,26 kNm

F32X= -F23X= 5,86 kN F32Y= -F23Y= 1,12 kN

M32= 0,190(0,63) +0,570(0,85) +1,266(4,21)
= (0,12 40,48 +5,33= 5,93 kNm

Forces and moments are drawn with their real
directions.
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Member 1.

R='EA/L'= EA/2,92= 0,342 EA
R=(0,342)50EI= 17,1 ET

A=12*EI/L"3= 12*EI/(2,9273)= 0,482 *EI
B= 6*EI/L"2= 6*EI/(2,9272)= 0,704 *EI
D= 4*EI/L= 4*EI/2,92= 1,370 *EI
E= 2*EI/L= 2*EI/2,92= 0,685 *EI

Member 2.

D1=X1(3)-X1(2)= 1,5-4,5=-3
D2=Y1(3)=Y1(2)= 1,0-0,0=1
L1=8qgr(-3,072+1,0"2)= 3,16

R="EA/L'= EA/3,16= 0,316 EA
R=(0,316)50EI= 15,8 EI

C=D1/11=-3,0/3,16=-0,949
s=p2/L1= 1,0/3,16= 0,316

Member end 3 is a hinge..
A= 3*EI/L~3= 3*EI/(3,1673)= 0,095 *EI
B= 3*EI/L"2= 3*EI/(3,16"2)= 0,300 *EI

D

3*EI/L= 3*EI/3,16= 0,949 *EI

With the formulas for Al, A2, A3, Al
and A5 follow calculation,

with joint load forces due to 15 kN.
Member end 3 of member 2 is a hinge!

by DO,

/79 2.

See formulas page g;

At member end 3 (5/16)*15= 4,69 kN,
at member end 2 (11/16)*15= 10,31 kN
and moment (3/16)*15*3,16= 8,89 KkNm.

EA=50EI

Example.

Fig.1.

One more time the same construction like on the
previous pages, now with member end 3 of member
2 a hinge. Both members with same bending
stiffness EI and strain stiffness EA=50EI.
Irregular joint humbering.

Member 1 with L=1 and H=3, member 2 L=2 =3.

X1(1)= 0,0 X1(2)= 4,5 X1(3)= 1,5 m
5 ,0 ™

Yi(l)= 3, Y1(2)= 0 Y1(3)= 1,0
Member 1. D1=X1(3)-x1(1)= 1,5-0,0= 1,5 m
D2=Y1(3)-Y1(1)= 1,0-3,5=-2,5 m

r
L1=Sqgr(1,5"2+(-2,5"2))= 2,92 m
Cc=D1/Ll1= 1,5/2,92= 0,514
S=D2/L1=-2,5/2,92=-0,856

Al= R*C"2 +A*3"2=
= 17,1EI*(0,514~2) +0,482EI*(-0,856"2)
= 4,518EI +0,353EI= 4,871 *EI
A2= R*S*C-A*S*C=
= 17,1EI(-0,856) (0,514)-0,482EI(-0,856) (0,514)
=-7,524EI +0,212EI= -7,312 *EI

A3=-B*S =-0,704EI*(-0,856)= 0,603 *EI
A4= R*S"2 +A*C"2=

17,1EI*(-0,856~2) +0,482EI*(0,514"2)
12,530EI +0,127EI= 12,657 *EI

AS= B*C= 0,704EI* (0,514)= 0,362 *EI

I

Value the same like on page 6/ .
1 2 3 7 8 9
1 4871 ~-7312 603 | -4871 7312 603
2| -7312 12657 362 7312 -12657 362

3 603 362 1370 -603 -362 685

7 | -4871 7312 -603 4871 -7312 -603

8 7312 -12657 -362 | -7312 12660 -362

9 603 362 685 -603 -362 1370

x EI/1000 551
552 of member 2, with L=1 and H=3, member end 3
a hinge, then sixth row and sixth column filled
with zeros, see page 645 .

4 5 6 7 8 9
4| 14238 -4710 95 | —-14238 4710 0

5| -4710 1664 -285 4710 -1664 0

6 95  -285 949 -95 285 0
7 |-14238 4710 -95 | 14238 -4710 O
8| 4710 -1664 285 | -4710 1664 0
9 0 0 0 0 0 0
" x EI/1000 $52 B
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Like on page éé follow three equations to
solve UX3, UY3 and UR3.

4'45 M32:0 - _
148 F31X+F32X 19109 -12022 -603 Ux3
— "9
F3Ix f' q—?.ﬁ_}( F31Y+F32Y | = | -12022 14324 -362 |' | UY3
—_
/‘2’3/\Af T M31+M32 -603 -362 1370 | | UR3
Fay - -
F.?jy 9.3- = = == —
19109 -12022 -603 Ux3 1,48
4
2,24 77, ~12022 14324 =362 |-|U¥3|=| 4,45
] \8’89
l -603 -362 1370 UR3 0,00
396 - -
448 x EI/1000 u £
. Fig.3 en 2.
4,43 /Z;yyﬂ, The elements of f follow with the equilibrium
4. . L )
equations for joint 3 like on page
I /zbyl_\q/‘? The equations written out without EI.
2 et 19,109*UX3 -12,022*0UY3 -0,603*UR3= 1,48
3,06
08 3 -12,022*UX3 +14,324*UY3 -0,362*UR3= 4,45
e————J=a
/5p %?a4u£ -0,603*UxX3 -0,362*UY3 +1,370*UR3= 0,00
[}
o §20 With computer Gauss page G5 follow
; 2 q}@/ UX3= 0,63/EI, UY3= 0,85/EI, UR3= 0,50/EI.
L A 77 ,
| 21{ Fig.4a.
Y Member end forces and moments due to the member
4’?1" 5 &'32 load force of 15 kN.
259 3 Fig.4
The member end forces and moments of member 2
£ due to the displacements alone with help of
02 /E;'q.zla, member matrix S52.

Fig.4c.
Addition of figire a and b gives the final mem-—
ber end forces and moments, M32=0 kNm.

The separately to calculate angle HZ3.
Fig.4c divided into three cases.

Fig.5a.
Due to 9,07 kNm at member end 2 arises
(9,07(3,16))/6EI= 4,78/EI to the left..

Fig.5b.
Due to 15 kN arises
(15(3,1672))/16EI= 9,36/EI to the right.

Fig.5c.
The displacements of member end 3 perpendicular
to the member axis become

(0,85/EI)*3,0/3,16= 0,81/EI and

(0, 63/EI)*1,0/3,16= 0,20/EI. Together 1,01 EI,
gives (1,01/EI)/3,16= 0,32/ET.

H32= 9,36/EI —-4,78/EI —-0,32/EI= 4,26/EI, that
is ... like joint roatation UR3=4,21/EI of
page

At member end 2, for the clamp addition of teh
angles 9,55/EI -9,36/EI -0,32/EI= -0,13/EI, mnot
bad... almost 0... is zero.
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Member 1. L=1 and H=2. '

At L=1 a hinge, third row and third co-
column filled with zeros, page 89, in-
dicated with dots. A verticale member,

concerning elements indicated with ze-

ros-

R='EA/L'= EA/4,80= 0,208 EA EA=60EI

A= 3EI/L"3= 3EI/(4,8073)= 0,027 EI
B= 3EI/L”2= 3EI/(4,8072)= 0,130 EI

D= 3EI/I= 3EI/4,80 = (0,625 EI
Member 2. L=2 and H=3.

At H=3 a hinge, sixth row and sixth co-
lumn filled with zeros.

R="EA/L'= EA/5,91= 0,169 EA EA=60ETI

A= 3EI/L~3= 3EI/(5,9173)= 0,015 EI
B= 3EI/L”2= 3EI/(5,1972)= 0,086 EI
D= 3EI/IL= 3EI/5,91 = 0,508 EI
F12X UlXW F23X u2x
F12Y Uly F23Y uzy
M12 UR1 M23 URrR2
=551 =352
F21X U2x% F32X 03X
F21Y uzy F32Y U3y
M21 J LURZ M32 LpR3
member 1 member 2
Member 3. L=3 and H=4.

Both member ends a real oint,
='EA/L'= EA/5,91= 0,169 EA EA=60EI
A=12FEI/L"3= 12EI/(5,9173)= 0,058 EI

B= 6EI/L”2= 6EI/(5,9172)= 0,172 EI

D= 4EI/1L= 4EI/5,91= 0,677 EI

E= 2EI/1= 2EI/5,91= 0,338 EI

F34X U3X Al= R*C"2 +A*572

F34Y U3y

M34 UR3 A2= R*S*C —-A*S*C

=353

F43X U4x A3= -B*S

F43Y U4y

M43 UR4 Ad= R*572 +A*C"2
member 3 AS5= B*C

Example.

Fig.1l.
Three members and four joints, binding stiff-
ness EI and strain stiffness ER=60EI.

X1(L)=
X1(2)=
X1(3)=
X1(4)= 11,20

10

11

12

0,00 m Y1(l)= 6,70 m
0,00 m ¥1(2)=1,90 m
5,60 m Y1(3)= 0,00 m Cc=D1/L1
m Y1(4)= 1,90 m S=D2/L1
1 2 3 4 5 6
27 0 =27 0 130
0 12480 0 0 —-12480 0
0 s E 0 @
=27 0 27 0 -130
0 —12480 0 0 12480 0
130 0 ~130 0 625
x EI/1000 S51 Cc=0 S=1

Al= 0,027 EI
A3= 0,130 EI

A2= 0 EI
A4= 12,480 EI

A5= 0 EI
4 5 6 7 8 9
9115 -3081 28 -9115 3081 .7
-3081 1058 88 3081 -1058 .
28 82 508 -28 -82
-9115 3081 -28 9115 -3081 >
3081 —-1058 -82 -3081 1058 .
x EI/1000 552 C=0,948 S=—6,321
Al= 9,115 ETI A2= -3,081 EI
RA3= 0,028 EI A4= 1,058 EI
A5= 0,082 EI
7 8 9 10 11 12
9119 3068 -55 -9119 -3068 —55_
3068 1097 163 -3068 -1097 163
-55 163 677 55 -163 338
-9119 -3068 55 9119 3068 55
-3068 —-1097 -163 3068 1097 -163
=20 163 338 55 -163 677
x EI/1000 553 C=0,948 S= 6,321
Al= 9,115 EI A2= 3,068 EI
A3=-0,055 EI Ad4= 1,097 EI

AS5= 0,163 EI
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Joint load forces and moments due to member
load force of 8 kN.

Fig.Z2a.
The components of 8 kN are

(8,00/5,91)*5,60= 7,58 kN and

(8,00/5,91)*1,90= 2,57 KkN.

With the formulas page follow the reactions.

(7,58%3,26(3%*5,91°2-3,2672))/(2*5,91"73) =

(24,71(104,78-10,63))/412,85=

2326,45/412,85= 5,64 kN at member end 2 2.

7,58 -5,64= 1,94 kN at member end Sp

The reaction moment at member end 2 with

(7,58*3,2672(5,9172-3,26"2)/(2*5,91"2) =

(24,71(34,93-10,63)/69,86=

(600,45/69,86= 8,60 XNm at member end 2.

Member end 3 a hinge, moment zero.

Due to 2,57 kN along the member axise arise

(3,26/5,91)*2,57= 1,42 kN at member end 2 and

(2,65/5,91)*2,57= 1,15 kN at member end 3.

Fig.2b en 2c.

The horizontal and vertical components are
(1,42/5,91)*5,60= 1,35 kN,
(1,42/5,91)*1,90= 0,46 kN,

(5,64/5,91)*1,90= 1,81 kN and
(5,64/5,91)*5,60= 5,34 kN at member end 2.

(1,15/5,91)*5,60= 1,09 kN,
(1,15/5,91)*1,90= 0,37 kN,

(1,94/5,91)*1,90= 0,62 kN and
(1,94/5,91)*5,60= 1,84 kN at member end 3.

Fig.2c en 2d.

On the joints act member end forces and moments
with assumed directions like on page to the
right, upward and to the right.

On joint 2 act forces and moments as large as
but opposite directed.

Elements of £ in CC u = f follow with equili-
brium of the joint.

% hor. joint 2 =0
F21X+F23X +1,35 -1,81= 0 F21X+F23X= 0,46 kN
% vert. joint 2= 0
F21Y+F23Y -0,46 -5,34= 0 F21Y+F23Y= 5,80 kN
¥ mom. joint 2= 0

M21+M23 -8.60=0 M21+M23= 8, 60 kNm
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Joint load forces and joint load moments due to
the uniformly distributed load of 3 kN/m.

Fig.3a en 3b.
The components of 3 kN/m are

(3,00/5,91)*5,60= 2,84 kN/m and
(3,00/5,91)*1,90= 0,96 kN/m.

With the formale page follow the reactions of
the on both ends clamped member.

(2,84(5,91)/2)= 8,39 kN,
(1/12) (2,84) (5,9172)= 8,27 kNm and
(2,84*5,91) /2= 2,84 kN.

Fig.3c.
The horizontal and vertical components of the
member end forces calculated like on the prece-

ding page ;Zﬂ.

Fig.3d.

On the separated joint 3 act forces as large as
these member end forces but opposite directed,
of member end 3 of member 2 of fig.2c, and of
member end 3 of member 3 of fig.3c. Further the
unknown member end forces F32X, F32Y, F34X and
F34Y, and the member end moments M32 and M34.

£ hor. joint 3 =0
F32X+F34X +1,09 -0,62 +2,70 -2,69= 0
F32X+F34X= —-0,48 kN

% vert. joint 3= 0
F32Y+F34Y -0,37 -1,84 -0,91 -7,95= 0
F32Y+F34Y= 11,07 kN

% mom. joint 3= 0
M32+M34 -8.27=0 M32+M34= 8,27 kNm

Fig.4.

On joint 4 act the member end forces of member
end 4 of member 3. Reaction forces and reaction
moment 'not yet there’.

The joint load forces and joint load moment
follow again with equilibrium of the joint
without the reactions at the clamp.

% hor. joint 4 =0
F43X +2,70 -2,69= 0 F43X= -0,01 kN

% vert. joint 4= 0
F43Y -7,95 -0,91= 0 F43Y= 8,86 kN

¥ mom. joint 4= 0

M43 +8,27= 0 M43= -8,27 kNm

May be better as follows?

Suppose joint load force F4X like earlier
assumed direction to the right,

F4X= 2,69 -2,70= -0,01 kN,

F4Y assumed downward,

F4Y= 7,95 +0,91= 8,86 kN,

M4 assumed to the right, M4= -8,27 kNm.
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1 2 3 4 B [5
1] 27 0 . ~27 0 130
2 0 12480 . 0 -12480 0
3 .
4| -27 0 . 9142  -3081 -102
5 0 -12480 . -3081 13538 82
6| 130 : . -102 82 1133
7 -9115 3081 -28
8 3081 -1058 -82
3 . .
10
11
12

X EI/1000

7 8 9 10 11 12
IRE*Y

UlY

UR1

-9115 3081 . u2x
3081 -1058 ; u2y
-28  -82 : UR2
18234  -13 -55 =-9119 -3068 =55 ' U3X
-13 2155 163 -3068 -1097 163 U3y
-55 163 677 55 -163 338 UR3
-9119 -3068 55 9119 3068 55 U4X
-3068 -1097 -163 3068 1097 -163 U4y
55 163 338 55 -163 677 | | UR4 |

cc

The knowm displacements are UlX=0, UlY=0, U4x=0, U4Y=0 and UR4=0, the equations 1, 2, 3 and
10, 11 and 12 fall off. Since member end 1 is a hinge the elements of the third row and
third column here above are zero indicated with dots. More dots because of member end 3 of
member 2 being a hinge. Equations 4 to 9 with unknowns U2X, U2y, UR2, U3X, U3Y and UR3 will
be solved. HE12 and HE32 are separately calculated.

1 i 9,142 -3,081 -0,102 -9,115 3,081 0 ] —ﬁZX_ i 0,46F 4 —F21X+F23X—
2| -3,081 13,538 0,088 3,081 -1,058 0 U2y 5,80 5 | F21Y+F23Y
3| ~0,102 0,082 1,133 -0,028 -0,082 0 UR2 | = 8,60 6 | M21+M23
4 | -9,115 3,081 -0,028 18,230 -0,013 -0,055 ‘ U3X -0,48 7 | F32X+F34X
5 3,081 ~1,058 -0,082 -0,013 2,155 0,163 usy | 11,07 8 | F32Y+F34Y
6 0 0 0 -0,055 0,163 0,677 UR3 8,27J 9 | M32+M34
= B I = B L _
/30'30/5_7 /\gﬂ/éséa/g) 3’112 ziiligﬁi;izﬁzwlefi:?lt with computer Gauss in

T2 ' 2

4 8om

J :

- £ } 'r/‘gl ‘6:

See matrix S51 page for the calcu-
lation of member end moment M21.
0,130EI(U2X) +0(U2Y) 40,126 (UR2)=
0,130EI(-130,30/EI)+0+0,126EI(8,29/EI)=
16,94 +0 %5,18= 22,12 kNm, positive

answer, as assumed to the right.

U2X=-130,30/ET U2y= 0,80/EI UR2= §,29/EI

U3X= -65,25/EI U3Y=194, 76/EI UR3=-39, 98/EI

Fig.5.
Slope deflection HE12 at member end 1.

Due to the displacement 130,30/EI of joint 2 to
the left arises
(130,30/EI)/4,80= 27,15/EI to the left.

Due to member end moment 22,12 kNm at member
end 2 to the right arises a slope deflection at
member end 1,

(22,12*4,80)/ (6EI})= 17,70/EI to the left.

Together HE12= 27,15/EI +17,70/EI= 44,45/E1,

to the left.
See page 77 with URl= -44,02/EI
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Fig.6a t/m 6d.

The separately to be calculated slope deflec-
tion H32.

Fig.6a.

At the member ends the horizontal and vertical
displacements are sketched, not drawn on scale.
U2X= -130,30/EI, negative answer, not as assu-
med to the right but to the left. Etc.

The displacements are resolved perpendicular to
the member at member end 2 and 3, drawn with
thelr real directions.

((130,30/EI)/5,91))*1,90= 41,89/EI
(( 0,80/EI)/5,91))*5,60= 0,76/EI

(( 65,25/EI)/5,91))*1,90= 20,98/EI
{(194,76/EI)/5,91))*5,60= 184,54/EI

Fig.6b.

At member end 2 41,89 -0,76= 41,13 /EI and
at member end 3 184,54-20,98= 163,56 JEI.

Due to the displacements alone arises a slope
deflection H1l to the right.
Hl1=(41,13+163,56)/5,91= 34,63 /EI

Fig.é6c.

The moment at member end 2 of member 2 is as
large as the moment at member end 2 of member 1
but opposite directed, thus 22,12 kNm to the
left.

At member end 3 arises due to this moment alone
angle H2 to the right,

H2=(22,12*5,91) /6EI= 21,79 /EI

Fig.ed.
Due to the load alone arises at member end 3 a
slope deflection H3 to the left,

H3= (7,58(2,65) (3,26) (5,91+2,65))/6*5,91EI
=(65,48(8,56))/35,46EI= 15,81 /EI

Together to the right HI1+H2+H3=
H32= (34,63+21,79-15,81) /EI= 40,61/ET.

Fig.7a, 7b en Tc.
At member end 2 arises 22,12 kNm to the left,
see fig.6¢c. Or to be calculated as follows.

Fig.7a.

Due to the displacements U2X, U2Y, URZ2, U3X and
U3Y (not drawn) alone with help of S52 page

EI omitted,

0,028 (U2X) +0,082(U2y) +0,508 (UR2)
-0,028(U3X) -0,082(U3Y) + 0 (UR3)=

0,028(-130,30) +0,082(0,80) +0,508(8,29)
-0,028( -65,25) -0,082(194,76)=

-3,65 +0,07 +4,21 +1,83 -15,97 +0= -13,51 kNm,
negative answer, so not to the right as assumed
but to the left.

Fig.7b. Fig.2a page O .
Due to the load alone 8,60 kNm to the left.

Together 13,51+8,60= 22,11 kNm to the left, OK.
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% hor.=0 and 3 vert=0. 3 mom.=07?

¥ mom. member end 3= 07
8,67+21,83+4,71(1,90)-6,94(5,69)=
30,50 +8, 95 -38,86= 0,59 = 0

;‘7,9,&0.
d%{? i!Jx:iqf::{}Z}lBlm/
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1_ 897
1 0,0)

e

% hor.=0
¥ vert.=0 8,86+8,86-17,73=-0,01 = O

¥ mom. member end 3 3=0 ?
17,73(2,80)+0,01(1,90)-8,86(5,60)

+8,27-8,27=
49,64+0,02-49,62 +0= 0,04 = 0
Fip. 84
v7a{ =
3
f/ﬁZ gae

o

4}:2
/580

% hor.=0
¥ vert.=0 1,92+15,80-17,73= -0,01 = O

¥ mom. member end 3 =0 ?

17,73(2,80)+4,72(1,90)+30,10
+0,40(?)-15,80(5,60)=

49,64+8,97+30,10+0,40(?)-88,48=0,63 = 0

/3?22%2.
Fi=¥
390 Lxkn
4722 ?E *)—4.;2
890 )5 4n
%6.4.

Fig.8a to 8c.
Calculation of member end forces of member 3.

rsax | | oi1s 3068 55 - - -] |u3x|
F34Y 3068 1097 163 - = =-| |uU3Y
M23 -55 163 677 - - =-| |UR3
ra3x | | -9119 3068 55 - - - | vax
F43Y -3068 -1097 -163 - =~ = | |U4Y
M43 -55 163 338 - - =-| |UR4
X EI/1000  s53 page 69._ S

U3X=-65,25/E1 U3Y=194,76/ET UR3=-39, 98/EI

Since U4X=0, U4Y=0 and UR4=0 the 4th, 5th and
6th column of matrix S5 here above are omitted.
The concerning elements multiplied by U4X, U4Y
and UR4 are zero, deliver no contribution to
the member ned forces and member end moments.

Fig.8a. EI omitted.

F34X= 9,119(U3X) +3,068(U3Y) -0,055(-39,98)

9,119(-65,25)+3,068(194,76)-0,055(-39,98)

=-595,01 +597,52 +2,20= 4,71 kN

F34Y= 3,068(-65,25)+1,097(194,76)+0,163(-39,98)

-200,19 +213,65 -6,52= 6,94 kN

M34

-0,055(-65,25)+0,163(194,76)+0,677(-39,98)

3,59 +31,75 -27,07= 8,27 kNm to the right

F43X= -4,71 kN en F43Y= -6,94 kN.

M43=-0,055(-65,25)+0,163(194,76)+0,338(-39,98)

3,59 +31,75 -13,51= 21,83 kNm

Fig.8b.
Forces and moments due to member loads alome.
See figure 3c of page ;Z/.

Fig.8c.

The final member end forces and moments due to
joint displacements and member loads as addi-
tion of figure 8a and 8b.

Ofcourse M43=0 because of the hinge.
In the figures member end forces and member end
moments are drawn with their real directions.

Fig.9.

The clamp reactions at support 4.

On joint 4 act forces and moments as large as
but opposite directed.

With the three equilibrium equations then

follow the support reactions as shown in the
second figure.
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Member 1. L=1 and H=2. =
At L=1 now a 'real joint', the short

stripe. For the vertical member the ze-
ros of S51 like on page .
R='EA/L'= EA/4,80= 0,208 EA EA=60ET
A
B
D= 4EI/L=

12EI/L~3= 12EI/(4,8073)= 0,109 EI
6EI/L 2= 6EI/(4,80"2)= 0,260 EI
4EI1/4,80= 0,833 EI

Example.

E= 2EI/L=

2EI/4,80= 0,417 EI

Member 2. L=2 and H=3.

At member end 3 a 'real joint'.

R='EA/L'= EA/5,91= 0,169 EA EA=60EI

A=12EI/L~3= 12EI/(5,91"3)= 0,058 EI

B= 6EI/L”2= 6EI/(5,91"2)= 0,172 EI

D= 4EI/IL= 4EI/5,91= 0,677 EI

E= 2EI/L= 2EI/5,91= 0,338 EI
Fl12X Ulx F23X Uuzx
Fl2Y Uuly F23Y U2y
M12 UR1 M23 UR2

=351 =852

F21X u2x F32X U3Xx
F21Y U2y F32Y U3y
M21 LUR2 M32 UR3

L _ _ - _ L _

member 1 member 2
Member 3. L=3 and H=4.

At member end L=3 a hinge, third row

and third column filled with zeros, see
page 59 -
R='EA/L'= EA/5,91= 0,169 EA EA=60EI

A= 3EI/L~3= 3EI/(5,9173)= 0,015 EI
B= 3EI/L"2= 3EI/(5,1972)= 0,086 EI

D= 3EI/L= 3EI/5,91 = 0,508 EI
F34X U3x Al= R*C"2 +A*S"2
F34Y U3y
M34 UR3 A2= R*S*C —-A*S*C

=553
F43X U4x A3= -B*S
F43Y U4y
LM43 URA4 A4= R*S*2 +A*C"2
member 3 AS5= B*C

Fig.1l.
Three members and four joints, bending stiff-
ness EI and strain stiffness EA=60EI.
X1(1)= 0,00 m Yi(l)= 6,70 m
X1(2)= 0,00 m Y1(2)= 1,90 m
X1(3)= 5,60 m Y1(3)= 0,00 m Cc=D1/L1
X1(4)= 11,20 m Y1(4)= 1,90 m S=D2/L1
itl 2 3 4 5 6
1 109 0 260 ~109 0 260
2 0 12480 0 0 -12480 0
3 260 6] 833 -260 0 417
4 -109 0 -260 109 0 =260
5 0 -12480 0 0 12480 0
6 260 0 417 -260 0 833
x EI/1000 S51 c=0 S=-1
Al= 0,109 ET A2= 0 EI
A3= 0,260 EI Ad4= 12,480 EI
AS5= 0 ET
4 5 6 7 8 9
4 9119 -3068 55 -9119 3068 -55
5 -3068 1097 163 3068 -1097 163
6 55 163 677 -55 -163 338
7 -9119 3068 55 9119 -3068 -55
8 3068 -1097 -163 -3068 -1097 -163
9 55 163 338 -55 -163 &77
x EI/1000 S52 C=0,948 s$=-0,321
Al= 9,119 EI A2= —-3,068 EI
A3= 0,055 ET a4= 1,097 EI
A5= 0,163 EI
7 8 9 10 11 12
7 9115 3081 -9115 -3081 -28
8 3081 1058 . -3081 -1058 82
9 .
10 -9115 -3081 9115 3081 28
11 -3081 -1058 3081 1058 -82
12 -28 82 28 -82 508
x EI/1000 S53 Cc=0,948 s= 0,321
Al= 9,115 EI A2= 3,081 EI
A3=-0,028 EI A4= 1,058 EI

AS5= 0,082 EI
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Fig. 2a.

Member end forces and moments due to the member
load force of 8 kN of member 2.

The components of 8 kN are-

7,58 kN and 2,57 kN.
Both member ends are rigidly connected with the
joints. The member is clamped at both ends. The

reactions follow with the formula paper.

Av= (7,58%(3,26"2))*(3*2,65+3,26)/(5,91"3)=

Il

(80,56%11,21) /206,43= 4,37 kN
Bv= 7,58 -4,37= 3,21 kN

MA= (7,58%*2,65%*(3,26%2))/(5,91"2)=

= 213,48/34,93= 6,11 kNm
MB= (7,58%(2,65%2)*3,26)/(5,91"2)=
= 173,53/34,93= 4,97 kNm

At member end 2 and 3 along the member axis
like on page
1,42 XN and 1,15 kN.

Fig.2b.

The horizontal and vertical components of the
just calculated member end forces are calcula-
ted like on page ;Q?.

Fig.2c.

The member end forces and moments due the mem-—
ber load of 3 kN/m of member 3.

The components of 3 kN/m are 0,69 kN/m and

2,84 kN/m. With the formula page follow the re-
actions due to the load alone.

Av=(3/8) (2,84%*5,91)= 6,29 kN

Bv=(5/8) (2,84*5,91)= 10,49 kN

MA=0 kNm and MB=(1/8) (2,84*5,9172)= 12,40 KkNm.
Fig.2d.

Member 3 with the horizontal and vertical com-

ponents of the member end forces.

Joint load forces of joint 2.
Fig.3 and 2b.

For alone member end 2 of member 2.
F21X+F23X= 0,05 kN F21Y+F23Y= 4,60 kN
M21+M23= 6,11 kN

Joint load forces of joint 3.
Fig.4, 2b and 2d.

0Of the member ends 3 ofmember 2 and member 3.
F32X+F34X= 0,61 kN FR2Y+F34Y= 10,28 kN
M32+M34=-4,97 kNm

Also joint 4, with
F43X=-0, 68 kN F43Y= 10,85 kN M43= 12,40 kNm

Joint 1 without joint load forces.
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3 4 5 6 7 8 9 10 11 12
260 ~-109 0 260 5 : ; o] [oix]
0 0 -12480 0 . ; U1y
833 -260 0 417 . . . URL
260 9228 -3068 -205 -9117 3068 55 : . . U2x
0 -3068 13577 163 3068 -1097 163 : i ; U2y
417 =205 163 1510  -55 -163 338 . . . |.|ur2
-9119 3068 -55 18234 13 -55 -9115 -3081 -28 U3x
3068 -1097 -163 13 2155 -163 -3081 -1058 82 U3y
55 163 338  -55 -163 677 0 0 0 UR3
. . -9115 -3081 0 9115 3081 28 U4x
: . -3081 -1058 0 3081 1058 -82 U4y
; : ; -28 82 0 55  -82 508 | | UR4 |

ccC

Prescribed displacements UlX=0, UlY=0, U4X=0, U4Y=0 and UR4=0, the concerning equations
1, 2, 10, 11 and 12 can be omitted. The third equation is not cmitted because of the un-
45", Thus remain seven equations to solve with the

known joint rotation UR1l, see page

unknowns UR1 of joint 1, U2X, U2Y and UR2 of joint 2 and U3X, U3Y and UR3 of joint 3.

1 2
1] 109 0

2 0 -12480

3| 260 0
4|-109 0 -
5 0 -12480

6| 260 0

g

8 ;

9 .
10
11
12 |

x EI/1000
1] 0,833 -0,260

2| -0.260 9.228
3 0 -3,068

4 0,417 -0, 205

5 0 -9,119
6 0 3,068
7 0 0,055

o]
-3,068
13,577

0,163
3,068
-1,097

0,163

0,417
-0,205
0,163
1,510
-0, 055
-0,163

0,338

0 0 o | Tora] [o | [ m2]
-9,117 3,068 0,055 U2x 0,05 F2X
3,068 -1,097 0,163 U2Y 4,60 F2Y
-0,055 -0,163 0,338 |-|UR2 |=]| 6,11 M3
18,234 0,013 -0,055 U3X 0,61 F3X
0,013 2,155 -0,163 U3y 10,28 F3Y
-0,055 -0,163 0,677 _UR3J L74,97_ | M3 |

Here below on the left the results for

the next construction of page ;@7, on

the right of a computer program.

U2X=-128,94/EI

U2y= 0,79/EI

UR2= 8,28/ET

U3%= -64,58/ET

U3y= 192,75/EI

Solution of the seven equations with computer
Gauss the following results

UR1l= -44,02/EI

U2x=-127,87/EI U2Y=_ 0,79/EI UR2= 8,20/EI

U3X= -64,04/ET  U3Y= 191,22/EI  UR3= 39, 60/EI

On page ;Z2 was found

HE12=-44,85/EI (ca. 2% difference with -44,02)

U2X=-130,30/EI U2y= 0,80/EI UR2= 8,29/ET

U3X= -65,25/EI  U3Y= 194,76/EI  UR3=-39,98/EI
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F2X= 1,81-1,35= 0,46 kN
F2y= 0,46+5,34= 5,80 kN
M2= 8,60 kNm

F3y
MB/’ 37 lp.g’

Fax ) 3 b9
il > S
263 2,02
L &ql .46 55,

F3X= 2,69+0,62-2,02-1,09= 0,20 kN
F3Y= 0,37+1,84+0,91+5,96= 9,08 kN
(M3= 0 kNm)

Example.

Fig.1l.

Three members and four joints, bending stiff-
ness EI, strain stiffness EA=60EI.

X1(1)= 0,00 m Y1(1l)= 6,70 m

X1(2)= 0,00 m ¥1(2)= 1,90 m

X1(3)= 5,60m Y1(3)= 0,00 m C=D1/L1
X1(4)= 11,20 m Y1(4)=1,90 m S=D2/L1

See the member stiffness matrices on page 75 to
compare them.

1 2 3 4 5 6
il - 27 0 s -27 0 130_
2 0 12480 0 0 -12480 0
3 0 0
4 =27 0 . 27 0 -130
5 0 -12480 0 0 12480 0
6 130 0 : -130 0 625
Mem;ér 1 x EI/1000 S51 Cc=0 S=1 )

4 9115 -3081 28 -9115 3081
5 -3081 1058 88 3081 -1058

6 28 82 508 -28 -82 .

7 -9115 3081 -28 9115 -3081

8 3081 -1058 -82 -3081 1058

c=0,948 s=-0,321

Member 2 x EI/1000 552
7/ 8 9 10 11 12

7 i 9115 3081 s -9115 -3081 —28—|

3 3081 1058 F -3081 -1058 82

9 - . .

10 ~9115 -3081 . 9115 3081 28
11 -3081 -1058 . 3081 1058 -82

12 -28 82 % 28 -82 508
Memgér 3 x EI/1000 553 C=0,948 s&S= 6,321

The assumed joint loads with their assumed di-
rections are

F2X, F2Y and M2 for joint 2 and

F3X, F3Y and M3 for joint 3.

They are the resultants of the on the joints
acting member end forces like represented in
the figures.
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1 2 3 4 5 6 7 8 9 10 11 12
1 27 0 % =27 0 130 1 UlX
2 0 12480 . 0 -12480 0 Uly
3 0 . . 0 § UR1
4 =27 0 . 9142 -3081 -102 -9115 3081 . U2¥X
5 0 =-12480 0 -3081 13538 82 3081 -1058 § U2y
6 130 0 . -102 82 1133 -28 -82 g UR2
7 -9115 3081 -28 18230 . . —-9115 -3081 -28 U3X
8 3081 -1058 -82 : 2116 : 3068 -1058 28 U3y
9 S i UR3
10 -9115 -3081 i 9115 3081 28 U4X
11 ~3081 -1058 . 3081 1058 -82 U4y
12 -28 82 3 28 -82 508 UR4
x EI/1000 CcC
The known displacements are UlX=0, UlY=0, U4X=0, U4Y=0 and UR4=0, the concerning equa-
tions 1, 2, 10, 11 and 12 fall off. Joint rotations UR1l and UR3 are not calculatednso
that alsoc the equations 3 and 9 fall off. Five equations remain to calculate the unknown
U2X, U2Y, UR2, U3X and U3Y.
On the preceding page the joint load forces F2X, F2Y and M2 of joint 2, figure 4, and
F3X and F3Y of joint 3, figure 5, calculated as resultants,
F2X= 1,81-1,35= 0,46 kN i.s.o. F21X+F23X +1,35-1,81=0 so that F2X+D23X= 0,46 kN, etc.
1 9,142 -3,081 -0,102 -9,115 3,081 U2X 0,46 4 | F21X+F23X F2X
2| -3,081 13,538 0,088 3,081 -1,058 U2y 5,80 5 | F21Y+F23Y F2Y
3| ~0,102 0,082 1,133 -0,028 -0,082 |=| UR2 | = 8,60 6 | M21+M2 M2
4| -9,115 3,081 -0,028 18,230 0 U3X 0,20 7 | F32X+F34X F3X
5 3,081 -1,058 -0,082 0 2,116 U3y 9,08 8 | F32Y+F34Y F3YJ
) With computer Gauss follows the solution of the
L2/ five equations.
U2X=-128, 94/EI U2yY= 0,79/EI UR2= B8,28/EIL
Fiatba . U3X= -64,58/EI  U3Y= 192,75/EI
Fig.6a.
The separarted member 3, a clamped member with
q‘;r member and member end loads.
With help of 853 follow due to the displace-
5,0/7 ments alone
F34X= 9,115(-64,58) +3,081(192,75)=
k;yéé = -588,65 +593,86= 5,21 kN and
- - . F34Y= 3,081(-64,58) +1,058(192,75)=
See figure 3. = -198,97 +203,93= 4,96 kN. M34=0 kNm
At member end 3 of member 3 Fig.é6b.
2,69-2,02=) 0,67 kN to the left and To be added with the member end forces due to
5,96+0,91= 6,87 kN upward. the loads alone, of figure 3.
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Fig.6c and 6d.

The addition of figure 6a and 6b with the
member end forces and member load. It is the
clamped member of which the member end displa-
cements can be calculated with the 'forget-me-
nots"'.

Therefore the member end forces and member load
are resolve dperpedicular to and along the mem-
ber axis.

Perpendicular to the member,

(4,54/5,91)*1,90= 1,46 kN and
(1,91/5,91)*5,60= 1,80 kN in same direction
together 3,26 kN.

Along the member axis,

(5,54/5,91)*5,60= 5,16 kN and
(1,91/5,91)*1,90= 0,61 kN not in the same di-
rection, 4,55 kN direction joint 4.

Fig.7a and 7b.
Due to 3,26 kN displaces member end 3 perpendi-
cular to the member,

F*L~3/3EI= (3,26*5,9173)/3EI
= 672,95/3EI = 224,32 /EI and

due to the distributed load of 2,84 kN/m
Q*L"~4/8EI= (2,84*5,9174)/8EI
= 3464,72/8EI= 433,09 /EI.

Member end 3 displaces
433,09/EI-224,32/EI= 208,77 /EI 'downward'.

Fig.7c and 7d.
Due to the axial force of 4,55 kN displaces
member end 3 direction joint 4 along the member

F*L/EA= (4,55*5,91)/ER= 26,89/EA, page 78gives
strain stiffness EA=60EI,

so 26,89/60EI=0,45/EI and

due to the distributed load of 0,96 kN/m
(Q*L~2/2) /EA= (0,96%5,91~2) /EA= 33,53/EA and
with EA=60EI follows 33,53/60EI= 0,59 /FI.

Together (0,45+0,59)/EI= 1,04 /EI direction
joint 4.

Fig.8.

Next the calculation of the horizontal and ver-

tical components of these displacements (not
drawn on scale!)

(208,77/5,91)*1,90= 67,12 /EI to the left and
(1,04/5,91)*5,60= 0,99 /EI to the right.

That's 67,12-0,99= 66,13 /EI to the left, found
on the preceding page U3X=-64,58 /EI.

(208,77/5,91)*5,60= 197,82 /BEI downward and
(1,04/5,91)*1,90= 0,32 /EI downward.

That's 197,62+0,32= 197,94 /EI downward and
U3y= 192,75 /EI found on the preceding page..

The differences are 2-3 percent, OK.
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7. Beam/member grids. (not yet checked)

7.1. The relation between member end forces FAB
and FBA and joint displacements UA and UB.

Fig.1l.

Earlier dealt with.

Suppose displacement UB is larger than UA then
the member lengthens AL=UB-UA and is a tension
member. Then on the member ends act forces F as
drawn.

With Hooke's law is AL=FL/EA, then follows
F=(EA/L) *AL.

With stiffness factor R=EA/L is F=R*AL.

With AL=UB-UA

follows F=R* (UB-UA) oar F=R* (-UA+UB) .

Now is FAB=-F or FAB=R* ( UA-UB) 1)
and is FBA= F or FBA=R* (-UA+UB) 2)
Both equation are represented on the left in
matrix form.

7.2. The relation between member end torsion
moments MTAB and MTBA and member end rotations
UTA and UTB.

Fig.2.

The torsion moments MTAB and MTBA represented
with a double arrow are assumed directing to
the right and cause member end rotations UTA
and UTB. With assumption UTB larger than UTA is
the torsion over length L ALU=UTB-UTA to the
left seen from B to A or H to L.

With member ends with a torsion moment MT it is
ALU at end B w.r.t. end A.

With Hooke's lae is ALU=(MT*L)/(GIp) rad.

G is the shearing modulus of elasticity

Ip is the polar mpment of inertia so that
MT=(GIp/L) *ALU

With stiffness factor T=GIp/L (R=EA/L) follows
MT=T*ALU, and with ALU=UTB-UTA is

MT=T* (UTB-UTA) or MT= T* (-UTA+UTB).

Member end moments MTAB and MT at member end A
are te same moment, then is MTAB=-MT so that
MTAB=-T* (-UTA+UTB) or MTAB= T*( UTA-UTB). 1)

And is MTBA=MT so that MTBA= T* (-UTA+UTB). 2)

on the left the two equations are given in ma-
trix form.

Fig.3.

Starting point for a beam/member like explained
for a continuous beam with joint/support dis-
placements.

In that case is no torsion, the beams are only
vertically loaded.

on the left matrix representation f = 85 u with
the belonging member stiffness matrix.

Grids in the horizontal plane deform by bending
and torsion.

The matrices of figure 1 and 2 are independent
from each other, will be put together by some
matrix manipulations.

&/



_FLHy_I B A 0 B -A O B_ _UVLyﬁ
MLHx 0 T 0 1 =T 0 URLx
LLHz B 0 D -B 0 E URLz
FHLy N -A 0 -B A 0 -B ‘ UVHy
MHLx 0o -7 0 0 T 0 URHx
MHLz B 0 E -B 0 D URHz

L . 1 R S J L . |

F79.48.

Joint load moments MLHZ and MLHX
with their assumed directions.

_FLHyW 1 0 o o o o] e
MLHx 0 ¢ S 0 0 O0]|MLEX
LLHz 0o -s ¢ 0 0 offmnz
FHLy 6o o 0 1 0 0] FHLY
MHLX 0 0 0 0 C S MHLX

LMHLz o o 0 o -5 ¢ MHLZJ

e T o £

7.3. Combination of bending and torsion.

Fig.4a.

Now with member ends L and H i.s.o. A and B.
The member axis system is x-y at the member end
with the lowest member end number L.

Looking from above on the horizontal plane.
Perpendicular on that plane act downward direc-
ted force FLHy and FHLy (like FAB and FBA), the
vertical member end displacements are UVLy and
UHLYy .

MLHz and MHLz are the bending moments at the
member ends, named MAB and MBA in figure 3.
These moments are indicated with double arrow
points.

The belonging slope deflections, joint rotati-
ons, are URLz and URHz.

The at the member ends acting torsion moments
are MLHx and MHLx with double arrow points.
Their rotations are URLx and URHx. Given on the
left in matrix form.

Matrix S is the combination of the matrices of
figure 1 and figure 3, preceding page.

Fig.4b.

These firces and moments (vectors) can be re-

solved into forces and moments w.r.t. the con-
struction axis system X1-Y1-Z1, indicated with
capitals X, Y and Z as follows,

FLHY, MLHX, MLHZ with assumed directions like

X1l-, Y1- and Zl-axis.

For member end L. Perpendicular to the horizon-

tal plane, FLHy= FLHY. 1)

Torsion moment MLHx consists of the components
a of MLHX and b of MLHZ. (X is X1 and Z=2Z1)
Cos (h)= a/MLHX or a= Cos(h)*MLHX and

Sin(h)= b/MLHZ or b= Sin(h)*MLHZ from which

MIHx= Cos(h)*MLHX +Sin(h)*MLHZ. 2)

Bending memnet MLHZ consists of ¢ and d.
Sin(h)= c/MLHX or c= Sin(h)*MLHX and
Cos (h)= d/MLHZ or d= Cos{(h)*MLHZ from which

MLHz= -Sin(h)*MLHX +Cos (h) *MLHZ. 3)

Likewise for member end H, now HL i.s.o. LH.
FHLy= FHLY 4)
MHLx= Cos (h)*MHLX +Sin(h)*MHLZ 5
MHLz= -Sin (h)*MHLX +Cos (h)*MHLZ 6

)
)

Here below the first three equations written
out in which all six variables.

FLHy= 1*FLHY +0*MLHX +0*MLHZ
+1*FHLY +0*MHLX +0*MHLZ 1)

MLHx= O*FLHY +Cos (h)*MLHX +Sin (h)*MLHZ
+0*FHLY +0*MHLX +0*MHLZ 2)

MLHz= O*FLHY -Sin(h)*MHLX +Cos (h) *MLHZ
+0*FHLY +0*MHLX +0*MHLZ 3)

The second three written out in similar way. On
the left represented in matrix form with

C for Cos(h) and 8 for Sin(h).

Matrix T is the socalled transformation matrix.
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T r = - Fig.5a en 5b.

FUVLy 1 0 0 0 0 0 FLHY The displacements w.r.t. the x-y-z axis system
can be drawn like moment vectors with the same
URLx 0 C S 0 0 0 MLHX assumed directions. They can be resolved into
components w.r.t. the construction axis system
UBLz el S C 0 0 0 MLHZ X1-Y1-Z1, or X-Y-Z. On the left represented in
= - matrix form u' = T u.
UVHy 0 0 0 1 0 0 FHLY
Axis system x-y-z, u' with
URHx 0 0 0 0 C S MHLX UVLy, URLx, URLz and UVHy, URHx, URHz.
URHz 0 0 0 0 =5 © MHLZ Axis sytem X1-Y1-Z1, written X-Y-Z, with
— — = i - UVLY, URLX, URLZ and UVHY, URHX, URHZ.
u' T u
7.4. Determination of member stiffness matrix
z/ LeLf s S5 with help of matrix manipulation.
\\‘//i:éfﬂx On the preceding page was found f£' = S u'. With
Lel)a 7 £' =T f and u' =T u follows T £ =5 T u.
2z3
\Qt/;? On the left and on the right of the = sign is
> DA/ | multiplied by the inverse T of T, one gets

T 'L EEE BTE

Further is T T = I (unity matrix) and
I f£f=£f in (1) finally gives

155 STu or f£=2S85u with 85 =T ST

Next siffness matrix 85 is found by two matrix
multiplications.

First S is multiplied by T so that

P=S8T (S times T, not T times S).

Element P(I,J)= row I of S times column J of T.
In matrix T is $=Sin(h) and C=Cos (h).

1 0 0 0 0 0 P(2,3) is row 2 of S times colum 3 of T.
0 C -S 0 0 0 P(2,3)= S(2,1)*T(1,3) +5(2,2)*T(2,3)
+S(2,3)*T(3,3) +S(2,4)*T(4,3)
0 S C 0 0 0 +8(2,5)*T(5,3) +5(2,6)*T(6,3)
0 0 0 1 0 0 = 0*0Q +T*S 4+0*T +0*0 +(-T)*0 +0*0= T*3
0 0 Q 0 cC -5 P(4,6)= S(4,1)*T(1,6) +S(4,2)*T(2,6)
+S(4,3)*T(3,6) +S(4,4)*T(4,6)
0 0 0 0] S C +S(4,5)*T(5,6) +5(4,6)*T(6,6)
T = (-B)*0 +0*0 +(-B)*0 +A*0 +0*S +(-B)*C= -B*C
e = = . -
A 0 B -A 0 B W 1 0 0 0 0 0 A -B*S B*C ~A -B*S B*C
0 T 0 0 -T 0 0 (4 s 0 0 Q 0 T*C T*S 0 -T*C -T*S
B 0 D -B 0 E 0 -S C 0 0 0 B -D*S D*C -B E*S E*C
* =
-A 0 -B A 0 -B 0 0 0 1 0 0 -A B*S -B*C A B*S -B*C
0 =T 0 0 T 0 0 0 0 0] C S Q -T*C -T*S 0 T*C XS
B 0 E -B 0 D 0 0 0 0 -S C B -E*S E*C -B -D*S D*CJ
S T P

&3




On the preceding page was found
f=85u with 85=T S T.

With P ST is S5 =T P the second
matrix multiplied shown here below.

i o 0 o0 o0 © 1T A  -B*S B*C -A -B*S B*C i A= 12*EI/L"3

0 c -S 0 0 0 0 T*C T*S 0 -T*C -T*S B= 6*EI/L"2

0 S & 0 0 0 B -D*S D*C -B E*S  E*C D= 4*EI/L

o 0o o0 1 o0 O -A B*S  -B*C A B*S -B*C - E= 2*EI/L

0 0 ©0 0 C -8 0 -T*C -T*S 0 T*C  T*S T= G*Ip/L

0o 0 0 0 8 cC B -E*S E*C -B  -D*S  D*C C= Cos (h) S= Sin(h)
L ) J L . 2
_FLHYﬁ —-A -B*S B*C - -B*S B*C i _UVLYT
MLHX -B*S T*CA2+D*S"2 T*S*C-D*S*C B*S  ~-T*C 2+E*S"2  -T*S*C-E*S*C URLX
MLHZ B*C T*S*C—D*S*C T*8A2+D*C"2  —B*C  -T*S*C-E*S*C  -T*5"2+E*C"2 URLZ
FHLY - -A B*S -B*C A B*S -B*C ) UVHY
MHLX —B*S  -T*C 2+E*S"2  ~T*S§*C-E*S*C B*S T*CA24D*S"2 T*S*C—D*S*C URHX
MHLZ B*C  -T*S*C~-E*S*C  ~T*S"2+4E*C"2  -B*C T*S*C-D*S*C T*$~2+D*C*2 URHZ
B b3 S S5 is Q T u B

&4



| .
77 A5

J/ 2 — .BE %Z

q T I

: Ssom , 681

1 T > ol
5‘;7; J
FLHX A WL W2 -A Wl W2||UVL
MLHX . W3 W4 -Wl W5 W6 || URLX
MLHZ 5 W7 -W2 W6 W8 || URLZ
FHLY | | . . . A -Wl1 -w2 || UvVH
MHLX ; ; : . W3 W4 || URHX
MHLZ ; : . . . W7 || uraz
Member 1.

With EI=1 and GIp=1, so GIp= 1*ETI.
All rotations expressed in EI.
L1=6,40 m C=1 $S=0 cr2=1 572=0

A=12EI/L"3= 12EI/6,4073= 0,046 *EI
B= 6EI/L"3= 6EI/6,40"2= Q,146 *EI
D= 4EI/L = 4EI/6,40 = 0,625 *EI

= 2EI/L = 2EI/6,40 = 0,313 *Ei
T= GIp/L= 1*EI/6,40= 0,156 *EI

Wl= -B*S= -0,146(0)= 0
W2= B*C= 0,146(1)= 0,146 *EI

W3= T*C"2+D*S~2= 0,156(1)+0= 0,156 *EI
W4= T*S*C-D*S*C= 0,156(0)+0= 0 *EI
W5=-T*C~2+E*$"2=-0,156 (1) +0=-0,156 *EI

W6=-T*S*C-E*S*C=-0,156(0)-0= 0 *EI
W7= T*S"2+D*C"2=
0,156(0)+0,625(1)= 0,625 *EI
W8=—T*S"2+E*C"2=
-0,156(0)+0,313(1)= 0,313 *EI

Member 2.

With EI=1 and GIP=1, so GIP= 1*EI.
L1=5.83 m C=1 85=0 cr2=1 $~2=0

= 0,061 B=0,177 D=0,686 *EI
0,343
T=GIp/L= 1*EI/5,83= 0,172 *EI

=
[

Wl= 0 W2= 0,177 W3= 0,172 *EI
W= 0 W5=-0,172 W6= 0 “EI
W7= 0,686 W8= 0,313

F12Y uvl F23Y uv2
M12X UR1X M23X UR2X
M127 UR1Z M237 UR2Z
=551 =852
F21Y uva F32Y uv3
M21X UR2X M32X UR3X
LngZ UR27Z M327 UR37%Z

Example.

Fig.1l.
Two coinciding members with both bending stiff-
ness EI and torsion stiffness GIp=1.

X1(2)= 6,40 Z1(2)= 0

X1(3)= 12,23 Z1(3)= 0 m

Member 1. D1=X1(2)-X1(1l)= 6,40 -0,00= 6,40
D3=2Z1(2)-21(1)= 0,00 -0,00= 0,00 m

X1(1)= 0 : 21(1)=0

Ll= 6,40 m  C=D1/Ll= 6,40/6,40= 1
S=D3/L1= 0,00/6,40= 0
| P12y 46 0 146| -46 0 146 [ ov1
M12X 0 156 O 0 -156 0| |URx1
mi2z | | 146 0 625|-146 0 313 | |URZL
F21y | | -46 0 -146| 46 0 -146| |UV2
M21X 0 -156 O 0 156 0| | URX2
M212 146 0 313 |-146 ~ 0 625 |URZ2
x EI/1000 851
F23Y 61 0 177| -61 0 177| |Uv2
M23X 0 172 0 0 -172 0| | urx2
M237 177 ~ 0 686 | -177 0 343 | |URz2
F32Y | | -61 0 -177 61 0 -177 | |Uv3
M32X 0-172 0 0 172 o| | urx3
M32% | | 177 0 343 | -177 0 686 | | URZ3

x EI/1000 552

Prescribed are vertical joint displacement
Uvl=0, UV2=0 and UV3=0, and joint rotation
URX1=0, URZ1=0, URX3=0 and URZ3=0.

Unknown are URX2 and URZ2.

On joint 2 acts a torsion moment of 11 kNm to
the right.

There are no member loads.

Finally one equation remains with the unknown
rotation URX2.

With a part of construction matrix CC follows,
with addition of the underlined elements of the
submatrices S51 and S52,

107 0 31 uv2 0
0 328 0 URZX 11
31 0 1311 UR2Z 0

x EI/1000

But UV2=0 and UR2Z=0, remains equation
0,328*UR2X= 11 from which UR2X= 33,54 /EI.

With 851 and 852 follow, EI omitted,
M21X= 0,156 (33,54)= 5,23 kNm and
M23X= 0,172(33,54)= 5,77 KkNm.

i = P
e 71,00 LM
792 558 577

The moments drawn with their real directions
shows that joint 2 is in equililibrium.
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Member 2.
With EI=1 and GIp=1l, so GIp= 1*EI.

All rotations expressed in EI.

X1(2)= 6,40 zl1(2)= 20 m
X1(3)= 6,40 z1(3)= 5,83 m
D1=X1(3)-X1(2)= 6,40-6,40= 0 m
D3=21(3)-21(2)= 5,83-0,00= 5,83 m

L1=5,83 m
C=D1/L1= 0,00/5,83= 0 G2
S=Dp3/Ll= 5,83/5,83=1 sSn2

0
=1

A= 0,061 B=0,177 D=0, 686 *EI
E= 0,343 T=GIP/L=1*EI/5,83= 0,172 *EI

Wl= -B*sS= -0,177(1)= -0,177 *EI
W2= B*C= 0,177(0)= O

W3= T*C"2+D*S~2= 0+0,686(1)= 0,686 *EI
W4= T*S*C-D*S*C= 0 -0 =0 *EI
W5=-T*C"2+E*8~2= 0+0,343(1)= 0,343 *EI

W6=—-T*S*C-E*S*C= 0 -0 =0 *ET
W7= T*S"~2+D*C*2= 0,172(1)+0= 0,172 *EI
W8=-T*S"2+E*C*2=—-0,172 (1) +0=-0,172 *EI

Member end forces and member end mo-
ments unequal zero. EI omitted.

Member 1 without member load.
M12X= -0,156(2,97)= ~-0,46 kNm
M21X= 0,156(2,97)= 0,46 kNm
Only a torsion moment 0,47 kNm.

Member 2 with member load 3 kN/m.

F23y= -0,177(2,97)= -0,53 kN

M23X= 0,686(2,97)= 2,04 kNm
F32Y= 0,177(2,97)= 0,53 kN
M32X= 0,343(2,97)= 1,02 kNm

These are forces and moments due to the
displacenments alone. Those due to the
member load will be added.

/0% & 56 748
) < — ooy
18,75' T&m
&% 1054

——

14275 Ty.ﬂé? Zp3
The member is loaded by bending, not by
torsion.

Example.

Fig.1l.

Two not coinciding members, both with bending
stiffness EI and torsion stiffness GIp=1*EL.
Member ends 1 and 3 are clamped, joint 2 is
vertically supported.

Member 1 like on the preceding page.

Fl2Y 46 0 146 -46 0 146 Uuvl
M12X 0 156 0 0 -156 0 UR1X
M12Z 146 0 625 | -146 0 343 UR1Z
F21Y -46 0 -146| 46 0 -146| |UV2
M21X 0 -156 0 0 156 0 UR2X
M217Z 146 0 343 | -146 0 625 UR27Z
x EI/1000 S51
F23Y ( 61 -177 0 -61 -177 0 uv2
M23X -177 686 0 177 343 0 UR2X
M23Z 0 0 172 Q 0 -172 UR2Z
F32Y -61 177 0 61 177 0 Uv3
M32X -177 343 0] 177 686 0 UR3X
M32%Z 0 0 -172 0 0 172 UR32
x EI/1000 552
Fig.2.

Member 2 with a vertical uniformly distributed
load of 3 kN/m.

The clamp moments are (1/12)*3*5,8372= 8,50 kNm
represented with moment vectors.
Further reaction forces (1/2)*3*5,83= 8,75 kN.

Q5

e

2 ]
Fig 2
Joint displacement UV1=0, UV2=0 and Uv3=0.
Joint rotation UR1X=0, UR1Z=0, UR3X=0, UR3Z=0,
concerning equations fall off.

Joint rotation UR2X and UR2Z are unknown.

Here below a part matrix of construction matrix
CC as addition of the underlined elements of
the part matrices of $51 and S52.

F2Y= -8,75 kN, M2X= 11,00-8,50= 2,50 KkNm.

107 -177 -146 uv2 -8,75
-177 842 0 URZX 2,50
-146 0 797 UR27Z 0,00
x EI/1000

Uv2=0, the equation falls off..
0,842*UR2X +0*UR2Z= 2,50 UR2X= 2,97/EI [11

0*UR2X +0,797*UR2Z= 0,00 UR2%Z= 0,00/EI

&6
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Alone joint load moment 11 kNm. [2]
Fl2y= O F23Y= -2,31 kN
M12X= -2,04 kNm M23X= 8,96 kNm
M12Z= O M23Z= O
F21Y= O F32Y= 2,31 kN
M21X= 2,04 kNm M32X= 4,48 kNm
M21Z= O M32Z= O
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Alone g-load 3 kN/m. [3]
Fl12y= O
M12X= 1,58 kNm
Ml12Z= O
F21Y= O
M21%X= -1,58 kNm
M21Z= O
F23Y= 1,79 +8,75= 10,54 kN
M23X= -6,93 +8,50= 1,57 kNm
M23Z= O
F32Y= -1,79 +8,75= 6,96 kN
M32X= -3,46 -8,50= -11,96 kNm
M32Z= O

40
R
3| 96
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i g o

Fig.4.

Like on the preceding page. No vertical distri-
buted load on member 2, joint 2 is loaded with
the moment of 11 kNm.

Two not coinciding members, both with bending
stiffness EI=1 and torsion stiffness GIp=1,
GIp=1*EI.

Member ends 1 and 3 are clamped, joint 2 is
vertically supported with a possibility of ho-
rizontal displacement according XI1- and Y1 axis
in the horizontal plane.

The relation between member end forces and
joint displacements like on the preceding page.

Now alone M2X= 11,00 kNm.

Joint rotation UR2X and UR2Z are unknown.Here
below the part matrix of construction matrix CC
as addition of the underlined elements of the
part matrices of $51 and S52.

107 -177 -146 uvz 0,00
-177 842 0 UR2X 11,00
~146 0 797 UR2Z 0,00
x EI/1000
0,842*UR2X = 11,00 UR2X= 13, 06/EI [21
Fig.5.

The separated members with the member end mo-
ments. Member 1 loaded with torsion, with mem-
ber end rotation

(2,04%6,40) /GIP is 13,06/EI rad.

Member 2 only loaded by bending.

The rotation of member end 2 (formula page) is

‘396( WEY"W s

& 13
s £33 » i
i

(8,96*5,83) /4EI= 13,06/EI is UR2X.

Fig.6.

Next the same construction with only the verti-
cal distributed load of 3 kN/m for which is
found on the preceding page the primary load
for joint 2 8,50 kNm and 8,75 kN.

107 -177 -146 uvz ~8,75

=177 842 0 UR2ZX -8,50

-146 0 797 UR2Z 0,00
0,842*UR2X = -8,50 UR2X= -10,10/EI {31]
Fig.7.

Member 1 alone loaded with torsion with member
end rotation (1,58+%6,40)/GIP is 10,11/EI rad.
Member 2 alone loaded with bending..

R ANy 17,98 Mim

"""7( g\{ T s;‘;

1,83

(1,57*5,83) /4ET —(3*(5,8373))/48EI=
1,57/EI -12,38/EI= -10,09/EI is 'to the right'!

With F23Y= 10,54 kN and F32Y= 6,96 kN is the
separated member in equilibrium.
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Member 1. L1=3,50 m C=0,928 s=0,371
T=GIP/3,50= 0,77EI/3,50= 0,220 *EI
A=0,280 B=0,490 D=1,143 E=0,571

W1=0,182 W2=0,455 W3=0,347 W4=-0,318
W5=-0,111 W6=-0,273 W7=1,014 W8=0,462

Member 2. L2=3,25 m C=0,800 s$=-0,600
T=GIp/3.25= 0,77EI1/3,25= 0,237 *EI
A=0,350 B=0,568 D=1,231 E=0,615

W1=0,341 W2=0,454 W3=0,595 W4=0,477
W5=0,069 W6=0,409 WwW7=0,873 WwW8=0,309

The here below drawn member loads in
reality vertically directed, perpendi-

culare to the plane of drawing. The
lttle arcs as well.

7n )
&

\\;zlswb&&v

M12=(1/12)*7*3,50"2= 7,15 kNm
M21= 7,15 kNm

The components of M21.
(7,15/3,50)*1,30= 2,66 kNm
(7,15/3,50)*3,25= 6,64 kNm

M23=(12*1,4572*1,80)/(3,25%2)= 4,30 kNm
M32=(12*1,45%1,8072)/(3,25"2)= 5,34 kNm

The components of M23.
(4,30/3,25)*1,95= 2,58 kNm
(4,30/3,25)*2,60= 3,44 kNm

Example.

Fig.1l.

Two members clamped at the ends 1 and 3 'two-
fold' against bending and torsion. The members
are tubes with same cross-section.

Moments of inertia Ix=Iy, is I, the polar mo-
ment of inertia Ip= 2I.

Modulus of elaticity  E=210000 N/mm"2

Shear m. of elaticity G= 81000 N/mm"2

Bending stiffness EI= 210000*I Nmm"2
Torsion stiffness GIp= 81000*2T Nmm~2

(GIp/EI)= (162000*I)/{210000*I} or

GIP/EI= 0,77 so that GIp= 0,77EI.

F12Y 280 -182 455 | -280 —-182 455 uvl
M12X -182 347 -318 182 -111 -273 URX1
M12Z 455 —-318 1014 | =455 -273 462 URZ1
= .
F21Y -280 182 -455 280 182 -455 uv2
M21X -182 -111 -273 182 347 -318 URX2
LngZJ 455 -273 462 | -455 -318 1014 URZ2

x EI/1000 S51

F23Y 350 341 454 | -350 341 454 uv2

M23X 341 595 477 | -341 69 409 URX2
M23Z 454 477 873 | -454 409 309 URZ2
F32Y -350 —341 454 350 -341 -454 uv3
M32X 341 69 409 | -341 595 477 URX3
M32Z 454 409 309 | -454 477 873 URZBJ
L [y IS =1

x EI/1000 852

Rotations URX2 and URZ2 of joint 2 are unequal
zero, all others are zero.
After composing S$51 and S52 to CC two equations
remain to solve.
Addition of the concerning underlined elements
of 851 and 852 follow with

347+595= 942 and -318+477= 159,
-318+477= 159 and 1014+873= 1887.

942 159 UR2X 5,24
159 1887 UR2Z -3,20
(cc) u £

Fig.2, 3 and 4.

The elements of f are the joint load moments of
joint 2.Needed therefore are the components of
the (primary) member end mecments. On Jjoint 2
acting as large as but opposite directed.

6.6

MJZ? ‘ é| Ta'%’ 350
2 %ééh__¥ 2

—_— L]

2 [~ :
rMax 258 42 Fig.4,
M2X=2,66+2,58=5,24 kNm M27=3,44-6,64=-3,20 kNm

0,942*UR2X +0,159*UR2Z= 5,24
0,159*UR2X +1,887*UR2Z= -3,20
Solution with computer Gauss gives

UR2X= 5,93/EI and UR2Z= -2,20/E1.

&8
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T 282 lwsz
G 28 72433

(5,93/3,50)*3,25= 5,51
(2,20/3,50)*1,30= 0,82

/EL
/E1

1,69 JEIL

Fig.5.
Assumed directions of member end forces and
moments.

Fig.6a.
Calculation of member end forces and moments
due to the displacements alone.

F12Y= -0,182(5,93) +0,455(-2,20)= -2,08 kN
M12X= -0,111(5,93) -0,273(-2,20)= -0,06 kNm
M12%= -0,273(5,93) +0,462(-2,20)= -2,64 kNm

F21Y= 0,182(5,93) -0,455(-2,20)= 2,08 kN
M21X= 0,347(5,93) -0,318(-2,20)= 2,76 kNm
M21Z= -0,318(5,93) =1,014(-2,20)= -4,12 kNm

Forces and moments in the figures drawn with
their real directions.

Fig.éb.

The member end forces and moments due to the
loads alone. Values earlier found on the prece-
ding page. The vertical reaction forces are
zijn (7%3,50)/2= 12,25 kN.

Fig.6c is 6atéb.

The final member end forces and member end mo-
ments. The moment vectors of figure 5c are not
perpendicular to or along the member axis.

Fig.7.

The components perpendicular on the member, see
figure 5c. Not sketched on scale...
(2,60/3,50)*1,30= 0,97 (0,10/3,50)*1,30= 0,04
(9,28/3,50)*3,25= 8,62 (2,52/3,50)*3,25= 2,34
Follows perpendicular on the member

at member end 1 0,97+8,62= 9,59 kNm and

at member end 2 2,34-0,04= 2,30 kNm.

Fig.8.
TIn the figure are the moments with little arcs
drawn with real direction.

} F 4Nl
9&9(\ [ TN Q)J..Boé/l/m
] 352 i
l/l;:.aa /a,//“z’l

s mom. 2=0 ? PO
24,5*%1,75+2,30-9,59-10,17*%3, 5=
42,88+2,30-9,59-35,60= 45,18-45,19= -0,01 OK

Fig.9.
The components along the member. See fig.7.

(2,60/3,50)*3,25= 2,41 (0,10/3,50)*3,25= 0,09
(9,28/3,50)*1,30= 3,45 (2,52/3,50)*1,30= 0,94
Difference 1,04 and 1,03

Torsion stiffness GIp= 0,77EI, see pageipe.
The rotation w.r.t. torsion at member end 2 is
(1,03*3,50) /GIP= 3,61/0,77EI= 4,69/ET.

Fig.10.

Calculated UR2X= 5,93/EI and UR2Z= -2,20/EI,
drawn as moment vectors with their real direc-
tions. Their components alog the member axis
together 5,51/EI-0,82/EI= 4,69/EI.

&9
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Fig.1lla.
Calculation of the
moments due to the

member end forces and
displacements alone.

F23Y= 0,341(5,93) +0,454(-2,20)= 1,02 kN
M23X= 0,595(5,93) +0,477(-2,20)= 2,48 kNm
M23Z= 0,477(5,93) +0,873(-2,20)= 0,91 kNm
F32Y= -0,341(5,93) -0,454(-2,20)= -1,02 kN
M32X= 0,069(5,93) +0,409(-2,20)= -0,49 kNm
M322= 0,409(5,93) +0,309(-2,20)= 1,75 kNm

In the figure drawn with their real direction.
Th forces F23Y and F32Y are the vertical sup-
port reactions. (Yl-as page L)

Fig.1llb.

The member end forces and moments due to the
loads alone. See page with the values for
member end 2. For member end 3 is
M32=(12*1,45%1,8972)/(3,25%2)= 5,34 kNm
with components

(5,34/3,25)*1,95= 3,20 kNm and
(5,34/3,25)*2,60= 4,27 kNm.

Fig.llc is 1la+1lb.

The final member end forces and member end mo-
ments due to displacements and loads.

Fig.l2.
(x/2,60)=(1,45/3,25) =x=2,60(1,45,3,25)= 1,16 m

(y/1,95)=(1,80/3,25) y=1,95(1,80/3,25)= 1,08 m

For lengths of line pieces of figure 13.

Fig.13.

The construction with loads and clamp reactions
see fig.6c page and fig.llc.

De constructie met belastingen en inklemmings-
reacties, zie fig.6c blz. en fig.llc.

The clamp moments

2,60 kNm and 9,28 kNm at member end 1 and
2,71 kNm and 6,02 kNm at member end 3.

The loads are perpendicular to the plane of
drawing, vertical support reactions as well
17,33 kN of fig.éc page ’

7,99 kN of fig.llc and

14,18 kN is 10,17 kN fig.é6c + 4,01 kN fig.llc.

% mom. w.r.t. clamp 1 (Z1)= 07?

Moments 'about an axle through 1' parallel to

zZ1.

7%3,5%(3,25/2) +12%4,69 -14,18*3,25 -7,99*5,85=
39,81 +56,28 -46,09 -46,74 = 3,26 kNm.

The vertical moment vectors 9,28 and 6,02 kNm
are added, aware of the directions follows

3,26 -9,28 +6,02= 0 !! Equilibrium

% mom. w.r.t. clamp 1 (X1)= 0?
7+3,5%0,65 +12%0,22 -14,18%1,30 +7,99*0,65=

15,93 +2,64 -18,43 +5,19 = 5,33 kNm

plus the moment vectors at 1 and 3,
5,33 -2,60 -2,71= 0,02 ... Equilibrium.

g0



Fig.1l4.
The same construction but now member end 3 is

J:ZY 2 not clamped (not twofold clamped, beding and
torsion). Now arise member end rotations UR3X
) 440 and UR3Z, the member end is like a hinge. There
? o is however no stiffness matrix derived with a
3 65 member end as a hinge. Therefore the member end
T is regarded as a 'real hinge’ like done for on
4?0 bending loaded members, page . So that the
d b same member stiffness matrices of page can
/30 Y 2,60 X/ be applied which put together form the con-
=t : = ; = struction matrix CC shown here below.
Fip
1 2 3 4 5 6 7 8 9
1| Fl2y r 280 -182 455 -280 -182 455 Uvl =
2 | M12X -182 347 -318 182 -111 -273 UR1X =
3| M12Z2 455 -318 1014 -455 =273 462 UR1Z -
4 | F21Y+F23Y -280 182 -455 630 523 =] =350 341 454 uv2 =
5 | M21X+M23X |=| -182 -111 -273 523 942 159 -341 69 409 |- | UR2X 5,24
6 | M21Z2+M232 455 -273 462 -1 159 1887 -454 409 09 UR2Z -3,20
7 | F32Y -350 -341 -454 350 -341 -454 uv3 =
8 | M32X 341 69 409 -341 95 477 UR3X -3,20
9 | M32z 454 409 09 -454 477 873 UR3Z -4,27
x EI/1000

Prescribed are the displacements UV1=0, UR1X=0, UR1Z=0, UV2=0 and UV3=0. The unknown dis-
placements, rotations, to be calculated are UR2X, UR2Z, UR3X and UR3Z.
The elements of force vector f£ are the joint load moments of fugure 2 and 3 page

2,66 Fig.15 see page
s The joint load moments are M2X and M3X assumed
? directed to the right, like X1 axis, M2Z and
o éé9 P M3Z assumed directed upward like Z1 axis.
i f
46.69 J29 1 M2X= 2,66+2,58= 5,24 kNm
) *320 M2Z= 3,44-6,64= -3,20 kNm
- 2 :
758 } Lhbm M3X= -3,20 kNm and M3Z= -4,27 kNm.
'3 3 i
xé’f;’ 3 3.2 0 de— The other elements of f are given no value be-
i i cause the concerning displacements are known,
v all zero.

The known displacements are UlX=0, UlY=0, U4X=0, U4Y=0 and UR4=0. Four equations remain
with the unknowns UR2X, UR2Z, UR3X and UR3Z. With computer Gauss the here below underlined
values are found. In the equations 0,942/EI and 0,159/EI etc. EI in the equations here
below omitted.

1) 0, 942*UR2X +0,159*UR2Z +0,069*UR3X +0,409*UR3Z= 5,24 UR2X= 10,34/EI
2) 0,159*YR2X +1,887*UR2Z +0,409*UR3X +0,309*UR3z= -3,20 UR2Z= -1,47/EX
3) 0,069LUR2X +0,409*UR2Z +0,595*UR3X +0,477*UR3Z= -3,24 UR3X= 3,24/E1
4) 0,409*UR2X +0,209*UR2Z +0,477*UR3X +0,873*UR3Z= -4,27 UR3Z= -10,99/EI

g/



Member 1.

F12Y=

(-0,182EI) (10, 34/EI)+0,455EI(-1,47/EI)=
-1,88 -0,67 = -2,55 kN

M12X=

-0,111EI1(10,34/EI) -0,273EI(~-1,47/EI)=
-1,15 +0, 40 = -0,75 kNm

M12Z=

-0,273EI(10,34/EI) +0,462EI(-1,47/EI)=
-2,82 -0, 68 = -3,50 kNm

Similar way, F21y= 2,55 kN

M21X= 4,06 kNm and M21Z= -4,78 kNm.

2 26

°7$ 1 *W

4[ lj..b’aé/vm 12,,515
2S55AY +
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/‘/9 J8,

Fig.l6a.

The member end forces and moments for member 1
due to the displacements/rotations UV1l, URIX,
UR1Z, UV2, UR2X and UR2Z alone.

Orescribed UV1=0, UR1X=0, UR1Z=0 and UV2=0.
Further UR2X= 10,34/EI and UR2z=-1,47/EI found
on the preceding page.

With member stiffness matrix S51 of member 1 of
page are written out on the left the first
three equations, EI not omitted.

For member 1 appear in displacement vector u
alone UR2X and UR2Z unequal zero.

See fig.5 page with the assumptions for for-
ces and moments.

Drawn are the member end moments with their
real directions. The vertical reachtions are
here drawn in the horizontal X1-Z1 plane.
F12Y= -2,55 kN, negative answer, not downward
like the Y1 axis as assumed but upward.

F21Y= 2,55 kN, positive answer, as assumed
downward.

Fig.1l6b.
See fig.
load alone.

. Moments and forces due to the

Fig.léc.
The final member end forces and moments due to
displacements and load.

Fig.l1l7 en léc.

Not properly on scale... it's about the values
of the components of the moments.
Perpendicular to the member axis, in kNm.

(1,91/3,50)*1,30= 0,71
(10,14/3,50)*3,25= 9,92
together 10,13

(1,40/3,50)*1,30=0,52
(1,86/3,50)*3,25=1,73
together 1,21

Also drawn in the vertical plane. With the
given vertical load now the slope deflection/
member end rotation due to bending can be cal-
culated at member end 2, see formuls page

The member clamped on the left.

Due to 1,21 kNm (1,21*3,50)/(4*EI)= 1,06/EI
Due to 7 kN/m (7*3,5073) /48*EI)= 6,25/EI
Answer 6,25-1,06= 5,19/EI to the left.

Fig.18.

Was found UR2X= 10,34/EI and UR2Z= -1,47/ET,

in the figure the vectors are drawn with their
real directions. They can be resolved perpendi-
cular to the member axis.

((10,34/EI)/3,50)*1,30= 3,84/EI
({ 1,47/EI)/3,50)*3,25= 1,37/EI
together 5,21/EI to the left

like found in figure 17, 5,21/EI ~ 5,19/EI OK.

The components at 2 along the member axis give
a 'torsion angle' 9,15/EI.

9,15/EI= (M*3, 50/GIp)= (M*3,50/0,77EI) page
from which torsion moment M=(9,15/3,50)*0,77=
2,01 kNm. The components along the member axis
of the moments at member end 2, figure léc,
deliver together 1,99 kNm, OK.
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Member 2.

Tt now concerns the four member end rotations UR2X= 10,34/EI, UR2Z= -1,47/EI, UR3X= 3,24/EIL
and UR3%Z= -10,99/EI. With member stiffness matrix S5 of page the first three equations
are written out. EI is omitted.

F23Y= 0,341*UR2ZX +0,454*UR2Z +0,341*UR3X +0,454*UR3Z =

F23Y= 0,341(10,34) +0,454(-1,47) +0,341(3,24) +0,454(-10,99)=

——— 2
24y
N
606 3

379&1 lqoo F. 1e.

324

/I\ Y28y

‘ 59
5. 24

3,53 -0, 67 +1,10 -4,99 = 4,63 -5,66 = -1,03 kN
M23X= 0,595(10,34) +0,477(-1,47) +0,069(3,24) +0,409(~-10,99)=
6,15 -0,70 +0,22 -4,49 = 6,37 -4,68 = 1,18 kNm
M23z= 0,477(10,34) +0,873(-1,47) +0,409(3,24) +0,309(-10,99)= 6,26 —4,68 = 1,58 kNm
A/8 2
== Fig.19a.
Due to the displacements UR2X, UR2Z, UR3X and
158 UR3Z alone, UV2=0 and UV3=0.
Lo34K 3 3200 Fig.19b.
Due to the load, see figure 3 page .
1.031 }4 24 The load force of 12 kN is in reality perpendi-
! };*_/ a cular to the plane of drawing, the drawn for-
259 —%— 9’ 9 : ces as well, shear forces 5,03 kN and 6,97 kN.
; Then is 5,03+6,97= 12,00 kN, equilibrium.
~ /24y
r 3 } Fig.19c is 19a + 19b.
.54 The final member end forces and moments also
3 3“20 now drawn with their real direction. At member
5?03 I 1 end 2 no moments, no clamp there.
697 437 FI?IQA Fig.20.
= : At member end 3 no clamp, no torsion moment, no
L40 torsion in membner 2.

Components of the moments along the member axis
at member end 2. Member length 3,25 m.

(1,40/3,25)*2,60= 1,12 kNm
(1,86/3,25)%1,95= 1,12 kNm Indeed, both as
large as but opposite directed, zero, no
torsion moment at member end 2.

Fig.21.
Components of the member end rotaties, or joint
rotations, UR2X and UR2Z along the member axis.

((10,34/EI)/3,25)*2,60= 8,27/EI
(( 1,47/EI)/3,25)*1,95= 0,88/EI
together 9,15/EI

If member 2 is not loaded by torsion, then the
components of UR3X and UR3Z must be at member
end 3 also together 9,15/EI.

3,24/E1)/3,25)*2,60= 2,59/EI
0,99/EI)/3,25)*1,95= 6,59/EI
together 9,18/EI = 9,15/EI OK!!

((
(1

At member end 3 of member 2 no moments.

But there is a bending moment at member end 2,
the sum of the components of 1,40 and 1,86 kNm
perpendicular to the member axis.

(1,40/3,25)*1,95= 0,84 kNm

(1,86/3,25)*2,60= 1,49 kNm
together 2,33 kNm
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Al11X1 +Al12X2 +Al3X3= Bl
A21X1 +A22X2 +A23X3= B2
A31X1 +A32X2 +A33X3= B3
2X1 + 3%X2 + 4X3= 8
5X1 + 10X2 + 15X3= 30
3X1 + 6X2 + 5X3= -2
5X1 + 10X2 + 15X3= 30
(5/2)*1) B5X1 +7,5X2 + 10X3= 20 -
2,5%X2 + 5X3= 10
3X1 + 6X2 4+ 5X3= -2
(3/2)*1) 3X1 +4,5X2 + 6X3= 12 -
1,5%X2 - X3=-14
2X1 + 3X2 + 4X3= 8
2,5X2 + 5X3= 10
1,5X2 - X3=-14
1,5X2 - X3=-14
(1,5/2,5)*2') 1,5%2 + 3X3= 6 -
- 4X3=-20
2X1 + 3X2 + 4X3= 8
2,5X2 + 5X3= 10
- 4X3=-20
AllX1l +Al2X2 +Al3X3= 8
A22X2 +A23X3= 10
A33X3=-20

1)

2)

1)
2}

3)

2)

3)

3Y)

3")

3")

)
3'!)

5.1. Solution of N equations with the elini-
nation method of GAUSS.

The given set of three equations with three un-
knowns will be converted into an upper triangle
set.

One may read this way, Al1X1 as All times X1,
2X1 as 2 times X1, etc.

Elimination of X1 from egqg. 2) and 3).

X1 from eqg. 2).

Equation 1) is divided by All is 2, and multi-
plied by A2l is 5,

(A21/A11) is 5/2, times eq. 1).

(5/2) (2X1 + 3X2 + 4X3=8) gives

5X1 +7,5X2 + 10X3= 20. This equation is sub-
tracted from eq. 2). One finds eg. 2'). X1 is
eliminated from eg. 2), A2l has become zero.

X1 from eg. 3).

Equation 1) is divided by 211l is 2, and multi-
plied by A31 is 3,

(A31/A11) is 3/2, times eq. 1).

(3/2) (2X1 + 3%2 + 4X3=8) gives

3X1 +4,5X2 + 6X3= 12. This equation is sub-

tracted from eq. 3). One finds eqg. 3"). X1 is
eliminated from eqg. 3), A3l has become zero.

Elimination of X2 from equation 3).

Equation 2’) is divided by the ‘new’ A22 is 2,5
and multiplied by A32 is 1,5 of eg. 37).
(A32/A22) is 1,5/2,5 times eq. 2').

(1,5/2,5)/1(2,5%2 + 5X3= 10) gives

1,5%X2 + 3X3= 6. This equation is subtracted
from eg. 3’). One finds wg. 3’').

X2 is eliminated from eq. 3’, A32 has become
zero.

This way three equations are found from which
the three unknowns can be solved by backward
substitution. One starts with the last equation
and works back to the first equation.

Backward substitution.

From eq. 3'') follows X3=-20/A33.
And with A33=-4 is X3=-20/-4=5.

In the beginning was A33=5, became in eq. 3")
A33=-1, and in eqg. 3'') A33=-4.

From eg 2') follows X2=(10-5X3)/A22 or
X2=(10-5(5))/2,5=-15/2,5=-6.

From eq.l follows X1=(8-4%X3-3%X2) /A1l or
X1=(8—4(5)—3(—6))/2=(8—20+18)/2=6/2=3.

Solution: X1=3 X2=-6 X3=5
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Private Sub GAUSS ()
NNG=0
——— For K=1 To N-1
—— If AA(K,K)=0 Then

—— T=0 For I=K+1 To N
If AA(I,K)<>0 Then
T=1 : For J=K To N
R=AA (K, J) AA(K,J)=RAA(I,J)
AA(I,J)=R
Next J
R=BB (K) BB(K)=BB(I) BB(I)=R
Exit For
End If
—— Next I

If T=0 Then See next page.

End If

A11X1 +A12X2 +Al13X3 +Al4X4= Bl 1)
A22X2 +A23X3 +A24X4= B2 2")
A32X2 +A33X3 +A34X4= B3 37)

A42X2 +R43X3 +A44X4= B4 4")

All Al2 Al3 Al4 X1 Bl

0 A22 A23 BA24 X2 B2

0 A32 A33 A34 X3 B3

0 A42 A43 A44 !X4 B4

L = 1= - i =il

A x

1o

I=3 Suppose AA(I,K)=AA(3,2)=0
Then follows Next I.

I=4 Supp. AA(4,2)<>0 then the elements

J=K To N=2 To 4 of row K=2 and row I=4
of matrix AA, are exchanged,
T wordt T=1.

J=2
R=AA(2,2) AA(2,2)=AA(4,2) BA(4,2)=R
AA(2,2) has become <>0.

J=3

R=AA(2,3) AA(2,3)=BA(4,3) AA(4,3)=R
J=4

R=BA(2,4) AA(2,4)=AA(4,4) BA(4,4)=R
R=BB (2)

BB(2)=B{4) BB(4)=R

"The elimnation process.
— For I=K+1 To N

V=AA (I,K)/AA(K,K) NNG=NNG+1
For J=K To N NNG=NNG+1

[ AA(I,J)=RA(I,J)-V*AA(K,J)
Next J
BB (I)=BB(I)-V*BB{K) : NNG=NNG+1
Next I
Next K

Private Sub GAUSS ()

The solution of N equations with the elimina=
tion method of Gauss.

For K=1 To N-1 the elimination process will be
carried out in the equations I=K+1 To N.
Suppose N=4 equations, then as follows:

if K=1 then X1 from eq. 2 to 4,

if K=2 then X2 from eqg. 3 to 4,

if K=3 then X3 from equation 4.

In the program code the arrays are

AA(,) BB() and XX().

In the elimination process there is divided by
the diagonal element AA(K,K), see left below.
So AA(K,K) can not be zero.

Is AA(K,K)=0 then in the column under AA(K,K)
shall be searched for an element AA({I,K)<>0. As
soon it is found equation K and I will be ex-
changed;

the elements J=K To N of the rows K and I of
matrix AA, and

the elements K and I of vector/column BB.

Suppose the first elimination is done, see on
the left, and that AA(K,K)=AA(2,2)=0. Then in
the K=2"¢ column of AA for I=3 To 4 will e
searched for an element AA(I,2)<>0.

Before it is assumed with T=0 (third line left
above) that such an element is not found.

Is after Next T....... End If still T=0 then a
solution is not possible and is the subroutine
left with Exit Sub.

Has T become T=1 then an element AA(K,I)<> has
been found, and after the exchange, the elimi-
nation process is carried out with the ‘new’
AA(2,2).

K=2 Elimination of X2 from eg. 3' en 4'.

For I=K+1 To N= 3 To 4

X2 from eqg. I=3. (that’s eq. 3')

The elements AA(K,J), AA(2,2) to AA(2,4) of
equation K=2 (is 2’), are divided by AA(K,K) is
AA(2,2) and multiplied by BAA(I,K) is AA(3,2).

But first V=AA(I,K)/BA(K,K) is AA(3,2)/ARA(2,2).

For J=K To N=2 TO 4 the elements BA(2,J) are
multiplied by V and subtracted from the ele-
ments AA(3,J).

BA(I,J)=AA(I,J)-V*AA(K,J)

=2 AA(3,2)=RAA(3,2)-V*AA(2,2)
AAD(3,2) has become zero.
=3 AA(3,3)=BA(3,3)-V*AA (2, 3)
V 'holds' AA(3,2) from before For J= K To N,
so, not the AA(3,2) which became just zero.
J=4 AA(3,4)=BA(3,4)-V*AA(2,4) and after
Next J Follows

BB(I)=BB(I)-V*BB(K)
BB(3)=BB(3)-V*BB(2)

Tis way the third eguation 3’’ has arisen.
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See preceding page.

If T=0 Then

CurrentX=900 : Current¥Y=750
Print "No solution possible.”
Exit Sub

End If

Al1X1 +Al12X2 +A13X3 +Al4X4= Bl 1)

A22X2 +A23X3 +A24X4= B2 2")

A33X3 +A34X4= B3 3'")

A44X4= B4 41

All Al12 Al3 Al4 X1 Bl

A22 A23 A24 X2 B2

A33 A34 X3 B3

If AA(N,N)=0 Then Exit Sub

'Backward substitution.
G=N+1
— For I=N To 1 Step-1 : S=0
If I<N THEN
For J=N To G Step-1 : S=0
[ S=S+AA (I, J)*XX(J) : NNG=NNG+1
Next J
End If
G=G-1 : NNG=NNG+1
XX(I)=(BB(I)-S)/AA(I,TI)
— Next I

End Sub

X2 from eqg. I=4.

V=AA(I,K)/AA(K,K)=AA(4,2)/AA(2,2)

For J=K To N=2 To N the elements AA(2,J) are
multiplied by V and subtracted from the ele-
ments AA(4,J).

J=2 AA(4,2)=RAA{4,2)-V*AA(2,2)
AA(4,2) has become zero.

J=3 AA(4,3)=AA(4,3)-V*RA(2,3)

J=4 AA(4,4)=DAA(4,4)-V*AA(2,4)

BB (4)=BB(4)-V*BB(2)
This way arises eqg. 4'').

Next follows the elimination of X3 from equa-
tion I=4 (is 4’’) and arises eq. 4''’).

Backward substitution.

After the elimination process N equations are
arisen from which the N to 1 (counting back)
unknowns can be solved, as is written out below
for N=4.

I=4 X4={ (B4 —{ 0 )) }/R44
I=3 X3={ (B3 - (A34%X4 )) }/A33
I=2 X2={ (B2 -(A24X4 +A23X3 ))}/R22
I=1 X1={ (Bl - (Al4X4 +A13X3 +Al2X2))}/All

But first G=N+1.
And then the calculation of XX (I).

For I=N To 1 Step-1 : 5=0

For each I sum S is determined with

For J=N To G Step-1 except when I=N.

If I<N Then .. sum S .eeee. End If

After End If becomes G=G-1.

After that XX(I) is calculated for each I with
XX (I)=(BB(I)~-S)/AA(I,I)

With N=4 is G=N+1=5

I=4 1I<4? no S stays 5=0
XX (4)=(BB(4)-0)/AA(4,4)

I=3 1I<4? yes J=N To G=4 To 4 Step-1
=4 S=0 +AA(3,4)*XX(4) G=G-1=3

XX (3)=(BB(3)-S)/AA(3,3)
I=2 1I<4? yes J=N To G=4 To 3 Step-1
=4 S=0 +AA(2,4)*XX(4)
=3 S=S +AA(2,3)*XX(3) G=G-1=2
XX (2)=(BB(2)-8) /AA(2,2)
I=1 1I<4? yes J=N To G=4 To 2 Step-1
=4 S=0 +AA(1,4)*XX(4)
=3 S=S +AA(1,3)*XX(3)
=2  S=85 +AA(1,2)*XX(2)
XX (1)=(BB(1)-S)/RA(1,1}

End Sub
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M*L/EI Z= M*L"2/(2*EI}

Formulas for slope deflections and displace—
ments.

Seven standard forsmmlas and several formulas
for simple beams on two supports.

E is modulus of elasticity in kN/m"2

EI is bendimg stiffness, EI is E*I with
I moment of inertia in m™4,

EI is (kN/m"2)*m"4 is kNm~2.

EA is strain stiffness, EA is E*A with
A cross sectional area in m"2,

EA is (KN/m"2)*m~2 is kN.

With the formulas follow Z in m and H in
radians.

] —E— Z=F*L/EA
2 €A
@
E4 2 =z,

§ : J T

Jﬁgh\ Z=Q*L 2/ (G*EA)
4

' forget-me-nots'

'.a'r‘é#
A D b

1 =:

HA= F*a*b* (L+b)/ (6*L*EI}

HB= F*a*b* (L+a)/ (6*L*EI)

ZD= F*a~2*p~2/ (3*L*EI)

o
&y

Lfy, /2

= HB= F*L~2/(16*EI}

B

W

[l
—

ZC= F*L"3/ (48*EI)
&
Al N |2
fr [ s
HA= HB= Q*L"3/(24*EI)

2C= 5*Q*L 4/ (384*EI) )

HA;—Q*LAB/(45*EI)

-~

HB= 7¥%Q*L~3/(360*EI)

Zzc= (5*Q*Lf4/(384*EI))/2

A e 3 ‘)”’
- __fiifL;f”gg
T %5

HA= M*L/ (6*EI) HB= M*L/(3*EI)

ZC= M*L"2/(16*EI)

)%2 A ¢ 8 ~Y
4 St
fav lav

HB= M*L/ (4*EI} ZC= M*L"~2/(32*EI)

AV=BV= 3*M/ (2*EI}

v
MA=3*EI*Z/ (1L."2) HB= F*2f(2*L)
BAV=BY= 3*EI*Z/(L~3) ZC= M*L~2/(32*EI}

MA=MB= 6*EI*Z/(EL"2) ZC= Z/f2

AV=BV= 12*EI*Z/({L~3)



