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Axially loaded continuous beams/members

Each member has two member ends, each member
end is connected with a joint.
The relation between member end forces and joint
displacements depend on the strain stiffness EA
of the members. They deliver the equations with the
joint dlsplacements as unknowns to be sol-ved.
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When the joint displacements are known the mem-
ber end forces can be calcufated.
Eor each member 2 equations are written,
each member del-ivers a stiffness matrix 2 x 2
which wilL be placed in the construction matrix

Fol-l-ows now the code of some basic subroutines
written and explained. To be copied if wanted.

Private Sub MEMBERo
CalcuLation of primary forces.

àt7-z P,t *f-x
It tg

Private Sub N5XX
Calcu-l-ation of the norma.l force each m.

Private Sub N5Go
Calcul-ation of the normal force each G m.

Private Sub MEMBERMATSSAXMEMBER( )

Stiffness mat.rix 55, stze 2 x 2.

Private Sub CONSTRMÀTCCAXMEMBER ( )

Matric CC composed of matrices 55.
N9 joints, matrix CC size N9*1.

Private Sub NGÍAINCÀLC o
Solving the equations with GAUSS. Part 12.
N9 joints with displacement UH(I),
N9*1 equations to be sol-ved

Composing constructie stiffness matricX CC
with mernber sti-ffness matrices 55 with

Frogran N(CC111O and

Proqran A]*CC222(|.
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l-.1-. The relation betr^reen member end forces and
joinÈ displacements.
Fig. 1.
The drawn constructi-on consists of (on1y) two
members, The member ends are connected with the
joints 1, 2 and 3, numbered from left to right.
E is the modulus of elasticitY.
A1 and A2 are two cross-sectional arêas.
EA is the strain stiffness, is E times A.
EA1 for member L and EA2 for member 2-
The member lengths are L1 and L2.
The member axes x are assumed to be directed
from lowest to highesL member end number' so to
the right, The construction axis X is assumed
to the right as well, but not necessary. For
more see paqe about x- and X axis'

Eig.2.
On the member ends of the from the joints
loosened members act memberend forces, F1-2 and
Ezt., F23 and F32. The assumption for their
directions is to the right, accordingr to the
member àxes. (Mertrlcer axes and construction axis
are not related, do not depend on each other. )

Fig, 3 .
The joint displacements UA and UB' beinq also
member end displacementsr are assumed to be di-
rected to the right, as the member axis x.
Now there are two possibilities to derive the
same relation between memberend forces and
joint displacements.

The first sibi

Is UB larger then UA' then the member will be-
come ÁL:UB-UA longer. The meÍlber is a tension
member. On the member endo act tension forces
egual in magnitude, the forces F as the figure
shows.
With Hooke's law is 

^L:FL,/EA.(F times L divided by E tímes A' )

From which follows F:(EA/L)AL.
With member stiffness factor R:EA/L becomes
F=R^L. Then with AL:UB-UA follows

l-*
EATlu E,q2+v

L2

43
-v l31t

FtZ t

FAA A

2 E2/

2-c--

F23 2

Fiq. 1

d

2

^L:)

F:R (UB-UA)

+

F2

----->

F32

F,g

.B FA4

F

_-?

LtB
i+É
tu4
i_-+

F
+-

z
or F:R ( -uA+uB).

Memberend forces FAB and F at member end A are
the 'same' forces' F=-FAB or FAB:-F-
$Iith FAB:-F follows FAB:-R(-UA+UB) or

FAB:R (UA'UB) . L'

Memberend forces FBA and E at member end B are
the 'same' forees. F:FBA or FBA:F'

With FBA:F follows FBA=R { _UA+UB}

Now two equations are found which give the
relation betr"reen
memberend forces FAB and FBA, and
the joint displacements UA an UB' by
using member stiffness factor R:EA/L.
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Fig. 4 .
The two eguati-ons can be represented in matrix
form i-n which is

f the force vector (or force column),

55 the member stiffness matrix, and

u the displacement vector (or -column)

An efement of f is equal to a row of matrix 55
multiplied by column u.

FAB= 55(1'1)*UA + 55(1'2)*UB

R*UA -R*UB

FBA: 55(2,1)*UA + 55(2'2)*UB

.R*UA +R*UB

These memberend forces FAB and EBA arise in
consequence of the joint displacements UA and
UB.

The second possibifity.

Eiq. 5 .
Not displacement UB is larger then UA, but now
UA is larger then UB. The member will become
ÀL:UA-UB shorter. It is a compression member.
At the member ends act equal compression forces
F because the member is in equilibrium.
Í{ith Hookers law is aL=FLIEA, or F:(EA/L)a

Fig. 5 Ílith member stlffness factor R:EAIL

becomes F:RÀL zodat F:R(UA-UB)

At member end A both memberend forces represent
one single force.
Then FAB:F so that FAB:R(UA-UB). 1,)
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To memberend B applies the same'
Then EBA:-F so that FBA=-R(UA-UB)

..l-----.r or

/-.r z2

Rl:EAl/L1 R2:EP.2/L2

FBA:R (-UA+UB) . 2)

One finds the same two equations as in the case
of the tension member of fig,3, (The relation
between f , 55 and u for the same member cannot
be different ofcourse, )

The relation between memberend forces and joínt
displacements is determined by strain stiffness
EA and menÈer length L' so by member stiffness
factor R:EA/L.
ff the construction consists of one single
member then construction stiffness matrix CC

(following page) is the same member stiffness
matrix 55.

Fiq. 6.
If the construction consists of two members
then one gets two sets of two equations on the
left represented in matríx form. Both sets of
two equations can be united to one single set
of three equations with the three unknown dis-
placements UA, UB and UC.

["*-l l- *t

L-^] L-.'

-R1

R1

R2 -R2

H
['"_l

L'"]

FBC

FCBIt

2

-R2 R2

Fig. 6.



A TABL +-
1,2. From membe! matrices 55 to cons.truction
matrix CC.

Eí9.7 .

Joints and rnembers are seperated/loosened from
each other- The on the member ends working mem-
berend forces are, according assumptíon' d.i-rec*
ted to the riqht. On the joints act opposite
directed memberend forces equal in magnitude,
directed to the left.
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Fiq.7. On joint C works

FCB : O*UA
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On joint A works, see fig.6'

FAB : R1*UA -RI*UB

On joint B works

+ o+uc 1)
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EBA+FBC: -R1*UA +R1*UB +R2*UB -R2*UC
: -RL*UA + (R1+R2) *UB -R2*UC 2)rcB
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Thus arise three equations which are on the
left represented in matrix form.
With forcevector f,
construction stiffness matrj.x CC, and
displacement vector_u.
Both sets of two equations are extended to a
set of three eguations as given here below,
which will be added.

FAB: R1*UA-RI*UB+ o*UC
FBA:-RI*UA+RI*UB+ 0*UC
0 : o*uA+ o*uB+ 0*uc

uf
1
2
3

0*uA+ 0*uB+ o*uc
O*UA+R2 *UB-R2 *UC

0*uA-R2*UB+R2*UC
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Adding eguation 1') and 1")
as shown here above, FAB: ..

gives equation l-)
And so on.
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Fig. B .

On the joints Í{ork the memberend forces, and
the joint load forces FA, FB, FC of which the
assrunption for the direction is to the right.
Each seperated joint must be in eguilibrium.

Fig. I .

E hor. joint A :0

FA-FAB:0

E hor- joint B :0

FB-FBA-FBC:0

I hor. joint C :0

FC-FCB:0

+

+ FBA+FBC:FB

FCB=FC
R1

-R1

0

-R1 0

R1_+R2 -R2

_R2 R2

fn this way one gets a set of equations from
which the displacements can be solved.
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Exampl-e.

Fig. L.
The three joj-nt numbers are arbitrarify chosen'
they are memberend numbers as wel-f.
The strain stifnesses are expressed in EA-
The member stiffness factors are
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Fig.1. R1:EAL/LL=3EA/O'6:5EA and

R2:F,A2 / L2:2EA / O, 5:4EA.
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The joint load forces are
F2=0 kNr F5=18 kN and F4:0 kN

As on the preceding page the set of three equa-
tions can be found, To come to a solution one,
or two, displacements must be known. Here of
both cantilevers. The displacements of joint 2

and 4 are given, are prescribed. U2:0 and U4:0.
To compute the unknown displacement U5 only one
equation is needed. Three equations will be
kept, but some elements of CC and f will be
chanqed,

Fí9.2.
Joint displacement U2 is práscri-bed, so not an
unknown- Then first row and first column of
construction matrix CC are filled with zeros,
but the element on the main díagonal is made
cc(1,1):1.
The elernents of force vector f do not chanqe
because displacement U2 is zero.
The same for tJA. Third row and third column are
filled with zeros and cc(3,3) becomes 1.
The first and third element of force vector f
are zero because the joint load forces F2 and
E4 are zero. If they were not zero then they
woul-d have been made zero because U2:0 and U4:0.

In this way the number of equations remains the
same. And in this way the sets of equations
in programs

cc wil-l- be prepared to so1ve the set

with the efimínation method ofAA x:b

GAUSS,

See prog ram GAUSSNEQUATIONS.

Ílritten out the equations become
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EA(1*U2 +0*U5 +0*U4): 0 :+ U2:O

EA(0*U2 +9*U5 +0*U4):18 or

EA(9*U5):18 U5:2/E,A.

U4:0EA(0*U2 +0*U5 +1*U4): 0

And so the equations are solved.
(Numbering the joj-nts from left to right with
2, 5 and 4 might be a little bit 'strange',
but it is possible. ofcourse, when proqramming
a reqular way of numberi-ngr is necessary to
avoid problerns. )
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Now as the displacements are known al-l- the mem-
berend forces can be computed,

Fig.3a en 3b.
lÍith the two equations for the fÍrst member
follows when U2:0 and U5:2,/EA

F25:EA (5*U2-5*U5)
:EA (5*0 -5*2 /EA)=EA (-1o/EA) :-10 kN.

The answer for F25 is negative. Thus the member
end force is not directed to the right as as-
sumed but directed to the left. The force does
not press on the member end 2 but pulls at the
member end.

F52:EA (-5*U2+5*U5)
:EA (-5*0 +5*2 /EA):EA (10/EA) :10 kN

A positive answer for F25. So this mernber end
force 1s directed to the right as assumed. The
force pul1s at member end 5. o.
One sees now that the member is tension member.

Fig. 4a en 4b.
In the same way for the second member with
U5--2/EA en U4:0.

F54:EA ( 4 *U5-4 *U4 )
:EA (4* 2 /EA-4 * 0 ) :EA ( B /EA) :8 kN

A positi-ve answer for F54. Thus the member end
force is directed as assumed to the right. The
force pressês on memberend 5.

F45:EA (-4*U5+4*U4 )

:EA (- 4 * 2 / EA+4 * 0 ) :EA ( -B /EA) :-BkN

A negative answer. Thus rnember end force F45 is
not directed to the right as assumed, but to
the left. The force presses on member end 4.
The member is a compression member'
Fig 5.
Normal force diagram.
Fig. 6.
Now the memberend forces acting on the joínts
are drawn with their real directions, equal in
magnitude but opposite directed to those of fig.
3b and 4b.
The reactions are assumed to be directed to the
right and are found with horizontaf equilibrium
of the joints.

E hor. joint 2 :0
RH2+10:0 = RH2=-10 kN

X hor. joint 4 :0
RH4+B:O + RH4: -B KN

For both ractions a negativ answer' So they are
not directed to the right as assumed but to the
1eft.
Jolnt 5 is in equilibrium, 18-10-8:0.

Fiq. 7 .
The construction is in equili-brium' X hor. :0
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1-3. Joint load forces and hold forces.

Fis. 1 .

The construction consists of two members and
three joints. While unloaded the joints A, B

and C are hol-d at place with the hold forces
FHA, FHB and FHC. Assumed directions to the
left.
Next the joint load forces FA' FB and FC are
applied. Assumed directions to the right.

Fig.2.
When the joints are released the hofd forces
are not there an\rmore and the joint load forces
become active. The construction deforms, the
members deform and the joints displace. At the
member ends arise member end forces directed to
the right according assumption to the right.
On the joints act forces as largie as the
memberend forces but opposite dj-rected' thus to
the left.

Fiq. 3 .
As shown on page q force vector f will be
fil-led with joint foad forces using horlzontal
equilibrium.
After that the unknown displacements UA, UB and
UC are solved out of the equations,

Joint load forces and

member foad forces' and

hofd forces.

F:-g.4 .

When al-so member l-oads are applied between the
joints with an asssumed directlon to the right
then the hold forces must become larger to
keep the joints at their places.

Because of these member load forces on the
sti1l hold joints wil-l- work to the right
directed forces FPAB, FPBA, FPBC and FPCB.

These forces are called primarv forces.

These forces are computed as the reactions of
the on both ends fixed members.

Eig. 5 .
As above the elements of force vector f fol-low
from the equilibrium of the joints.
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X hor. joint A :0
FA+FPAB-FAB:0

X hor. joint B :Q
FB+ FPBA+ FPBC- FBA- FBC:0

E hor. ioint C :0
FC+FPCB-FCB:0

FAB:FA+FPAB

FBA+FBC:FB+FPBA+FPBC

FCB:FC+FPCB

+

+f

Thus, force vector f is now filled with joint-
load forces plus primary forces.

ó

Fig. 5.
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Example.

Fiq. 1 .
The construction consists of two members and
three joints which are numbered from left to
right.
The member stiffness factors are
R1:EA1 /t1= L?E,A/ 4:3EA and R2:EA2 / L2:a)EA / 5:2EA'

The joint load forces are
F1=0 kN, F2:-11 kN and F3:0 kN.
Along member 2 acts a uni-formly distributed
load of 4 kN/m directed to the right'
The reactions of this member hold at both ends
are (5*41 /2:IO kN, they are directed to the
left, on the joints in opposite direction, thus
to the right.
In the following calculation rate number EA is
omi-Lted.

Fig.2 en 3.
The el-ements of force vector f fol1ow with
x hor. :0 of the joints.

The primary forces are
FP23:10 kN and FP32:10 kN

X hor. joint 1 :0
FL-FL2:O :+ F12:F1:0 kN

X hor. joint 2 :0
F2+VP23-F21-F2 3:0

= E2L+F23:82+FP23:-1-1+1-0:-1 kN

X hor. joint 3 :0
F3+EP32-F32 + F32:F3+FP32:0+10:10 kN

Fig. 3 .
The displacement of joint 1 is known. is pres-
cribed, is U1-:0. Threrefore the fírst row and
first column of construction matrix CC are
filled with zeros except the diagonal element,
this becomes CC(1,1):1. (See paqe I .)

The first el-ement of force vector f is zero,
EI2:81:O.
Multiplication of the first row of CC with u
delivers
1*U1 +0*U2 +0*U3:0 (this zero is the first
element of f) and qives U1:0. Tha"t's correct,
but if this first element of f is not zero,
thus if Fl<>O, then would become Ul-<>0; in that
case one must correct U1 and make it zero.
Because the whole set of three equatj-ons will
be used in the proqrammatic so1ution......later.
At this moment without programming- Then there
are Lwo equations left to solve'

5*tJ2-2*U3:- a 2l
-2*tJ2+2*tJ3: IO + 3)
3*U2 : 9 from which U2:3,

and given in eq. 2) follows
5*3-2*U3:-1 or -2*tJ3:-I6 so that u2=8.
(And urith EA then v2:3/EA and U3:B/EA-)

The answers for ÏJ2 en U3 are positive, joint
2 en 3 displace as assumed to the right.
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1.4. Calculation of the member end forces.

Fig. 4a.
Also now calculating omi-tting stiffness EA, it
'disappears'.
With U1:0 and U2:3 foll-ow with 'row times co-
lumn t ,
FL2:3*0-3*3:-9 kN
F21=-3*0+3*3:9 kN

Thêse are member end forces as result of dis-
placements al-one. As there are no member loads
these forces are the final member end forces,

F/2 /, 2 r-2t
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q
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Fig. 4a

Fig. 4b.

s t32
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p32
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Fiq. 4b.
The member end forces
member ends.
A negative answer for
the right as assumed,
A positive answer for
ted to the right.

as they rea1ly act on the

TL2, so not directed to
but to the Left.
F21-, so as assumed diree-

Ê23 2-
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Fig. 5a.
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Fiq. 5b

/o

Fig. 5a.
Next member 2 with U2:3 and U3:B
823: 2*3-2*B: 6-16:-10 kN
832:_2*3+2*8:-6+16: 10 kN

These are member end forces as reu.l-t of dis-
placements alone.

Fiq. 5b.
The memberend forces as they really act on the
member ends.

Fig. 5c.
As result of member loads alone, arise on the
before holded/fixed member ends forces of 10 kN
directed to the left,

rig . 5d.
The member end forces as result of displace-
ments alone, fig,5b, and
memberend forces as result of member loads
a1one, fig.5c,
when added they deliver the final member end
forces of member 2.
At member end 2 a force of 20 kN whj-ch pul1s on
the member end, and at member end 3 a force
equal to zero.

Fig. 6.
The normal- force diagrarn. The members are sub-
jected to tension.

Fj-g. 7 .
The elements of the total force vector f are
calculated using the original, not altered,
construction matrix CC.

K1:F12 3*0 -3*3 +0*0= 0- 9+ 0: -9 kN

K2:F2L+823: -3*0 +5*3 -2*8: 0+15-16: -l- kN

K3:F32 0*0 -2*3 *2*B: 0- 6+16: 10 kN
These are the so-called oi-nt forces as resuft
of the displacements alone, assumed direction
to the l-eft.
More about this later, see page
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l-.5. The elastic /sori nov srrDDort

Fig. 1a .

Joint A is supposed to be elasticly supported
A spring is drawn at A' a bit large' and the
axis does not coincide with the member axis,
just to be more clear.

If joint A displaces UA to the right the spring
will be stretched.
The member will exercise on the spri-ng end on
the riqht a spring force VKA to the right.

On joint A itself a spring force VKA is
exercised to the 1eft.

With SA as spring constant follows VKA <- :SA*UA

Fi.g. 1b.
In this case the spring is pushed in if joint A
displaces UA as assumed to the right.
Then the member will exercise on the spring end
on the left a spring force VKA to the right.

On joi-nt A itself a spring force VKA is
exercised to the 1eft.

Fí9.2.
Then on joint A act member end force
FAB:R1*UA-RI"*UB, see page 3 . and
spring force VKA:SA*UA.

The first element of the force vector becomes
FAB+VKA:R 1 * UA+ SA* UA_R1 * UB: ( R1 + SA) * UA-R1 * UB .

Is al-so joint B el-astic supported then if joint
B displaces UB to the right the on the joint
acting spring force VKB is directed to the left
Then VKB <- :SB*UB.

On joint B act now member end force
FBA:-R1*UA+R1*UB, and member end force
FBC: R2*UB-R2*UC, and spring force
VKB: SB*UB.
The second element of f becomes

FBA+FBC+VKB=-R1*UA+R1*UB+R2*UB-R2*UC+SB*UB or

:-R1*UA+ (R1+R2+SB) *UB-R2 *UC.

If there's no spring at C then the third
element of force vector f
FCB=-R2*UB+R2 *UC.

The relation between member end forces and
spring forces, and the joint displacements, is
given otl the left in matrix form.

The sprj-ng constants SA and SB are stiffness
factors l-ike R1:EA1/L1 and R2:EA2/L2.

EA1,/LI dimension, tkN/m^21 * 1m^2) lm is IkN/m]

so one can see now that when a joint is elas-
ticly supported then the concerninq spring
constant is added to the belonging'/concerning
diagonal efement of construction matrix CC.

uA
-]---|.

V//A t/kA
+

VgA
+-

A

uA
i--+-

v/ë"4
_---___->

FAB+VKA

FBA+FBC+VKB

FCB

R1+SA

-R1

llvvw7-KA

r,

a

Al rkAl.- /b.rÁ.

!:-Y'LLP"
t/t<A v.H8

,trq

t'h 2,

f

-R1

R1+R2+SB -R2

-R2 R2

CC

UA

UB

UC

u
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Fig. 1 .

The strain stiffness factors are

R1:EA1,/L1:2EA/0,5: 4EA and

Fig.1. R2:ÉA2/L2:3E,A/0,5: 6EA

Joint 1 1s el-asticly supported. The spring con-
stant 51, a stiffness factor as well, is here
expressed in strain stiffness EA, S1:2EA.
The displacement of joint 3 is pre$IÏ6íd,
U3=0.
In the calculation EA is omitted. The displace-
ments one wi-l-l find fina11y in 1/EA.

Eig.2.
The first e]ement of force vector f is member
end force F12 plus spring force VKL.
The first diagonal e]ement c(1,1) is stiffness
factor R1:4 plus spring constant S1:2.

2

l

["'
LF32

6

-66 H
-6

=EA

F12+VK1

F'27+F'23

F'32

-40

4+6 -6

-66

c

4

-4

0

S5

:EA

0

U1

U2

U3

Fig. 3.
Joint foad forces F1:0 and F2:0, and F2:22 kN
are as assumed directed to the right.
The second efement of f then becomes 22 kN.
The two equations to find U1 and U2 now are

uf
6*uI_ 4*u2: O

_4*u7+l.0*U2:22

_ 6*U1+15 *U2:3 3

t_)

3) times 1-5 gives

3') 1) + 3') gives

EA -4

.+-

U1

U2

U3

6 -4

10

0 1

0

22

0

Eig.2 .

Piq. 3

l-1*u2:33 thus I)2=3/EA, in 1) follows
6*u1-4*3:0 so that v]-:2/EA.

Fig.4 en 1.
Utith f : 55 u the member end forces for each
member can be determined.
Member 1.
F7-2- 4*UL_4*U2-_ 4*2-4*3- B-Lz: -4 kN
F27:-4*U]-+4*U2:-4*2+4*3:-8+12: 4 kN
Member 2.
823: 6*U2-6*U3: 6*3-6*0: 1B-0= 18 kN
F32:-6*U2+ 6*U3:- 6* 3+6* 0:-1 B+0:-1 B kN

The forces acting on the member ends and on
joj-nt 2 are drawn with their real, directions,
Member 1 is a tension member and member 2 a
compression member,
Joint 2 ís in equilibrium.
Calcufation of the joint forces. They are the
e-lements of f of tíq.2.

K1:F12+VK1: 6*2- 4*3+0*0: L2-1,2: 0 kN
K2:E2L+823:-4*2+LO*3-6*0: -B+30: 22 kN
K3:F32 : O*2- 6*3+6*0 :-18 kN

Fig. 5.
?he spring force is reaction force as well. ïs
assumed that the direction of reaction force
RHl to the right,, and of the spring force'to
the left, see preceding page, then is
RH1:-VK1:-S1*UA:-2EA*2/E,A:-A kN. Minus 4, so
not as assumed to the right but to the 1eft.
RH3 fol-lows with X hor. joint 3 :0.
RH3+F3-K3:0 or RH3+0- (-18):0 so that
RH3=-1-B kN, thus directed to the 1eft.

(J

+t

fu

È/2 a F2/

Ê
F23 2 3 FJ2

/B

+

/oê <__

* -J-=:2 /o
'K2

#J€

Eiq.4 .

Rua
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v(/

B
3

+ (3
Fig. 5.
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fH/x h a/ r L
e

/t

on and êr
, axis x.
Fig. la and 1b.
FABX and FBAX are member end forces withr
respect to construction axis X, assumed to be
directed to the right. The capital fetter X
indicates these forces.

Fig. 2a and 2b.
ft is assumed that the origin of member axis x
is A and that this axis is directed from A to B
The member end forces FABx and FBAx (indicated
by the smalf letter x) are directed according
to the direction of the x-axi-s.
Is the lowest member end number L equal to A,
and the highest member end number H equal to B,
then the member end forces FABX and FBAx are
directed according to the x-axis from L to H.
There are no member loads between the joj-nts,
or member ends.
Member end forces w.r,t. construction axis X
and member axis x are equal.

Fig. 1-a and 2b.

F25X: F25x F52X: F52x

Fig.1b and 2a.

F25X:-F25x F52X=-F52x

One may say that the second member 2a resp. 2b
is equal to the first member 1a resp. 1b, which
is turned over 180 degirees about A.

Fig. 3a, 2a and 1a.
ff the coórdinates X1 (L) and X1 (H) of the
joints, or member ends, are given then one can
write
D1:X1 (H) -X1 (L) and the member length becomes
L1:SQR (DL^21 and is C:D1,/L1 .

D1 is positive, thus C:D1lL1:+1r also positive.
The member end forces w.r.t. mêÍÍÍber axis x are

FLHx: FLFIX'C : F25X'C is F25X and

Fiq. 2b. FHLx: FHLX'C : F52X.C is F52X

Fig.3b, 2b and lb.
Now the member end numbers are exchanged.
The member axis x is now directed to the 1eft,
and constructj-on axis X is directed to the
right as is assumed.
D1:X1 (H) -X1 (L) Also now, first the coordinate
with the highest joint number H, and then the
coordinate with the lowest joint number L.
L1:SQR(D1^2) and C:D1/L1-.
D1 is negative, then C:D1,/LL:-1, also negative.
The member end forces can be found with the
formulas here above.

t

4 ,g x
F.lgx

È2fx

FBAX

Ê52x
Ei7.ta

-
F2íX, 

i

Fis. 1b.

t""l
Lu"_i

z í

.f 2
Èf2x

l-"rr*l [ *ttt
[".,,._] 

- 
L-.

f".r*-l f ottt
["""J-I--

A

L

Zx.

t't H
-R

R

-R

R

)c .3

F4Bz ë FEAI

I
Fztz fí2x

F,g'h

Fttz

FzHz 4-* zl A

*-
FJ€z

d+

, FH/.2

Fig.3a.

FlHt
FLHx: FLHX.C : F25X.C is -F25X and

FHLx: FHLX'C : T52X'C is -852X

Negative answers in this case. Member end for-
ces FLHx and FHLx are not directed to the l-eft
according to the assumed direction of the x
axis, but to the rJ-ght.

x/ó")
x/a-)

Fig.3b
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l-.7. Primary forces as result of member load
a1 the rnember.

Eig.4a.
It is assumed that the concentrated loads and
distri-buted l-oads are directed as the member
axi-s x from the lowest member end number L to
the highest member end number H.

While unloaded the member is hold at both
member ends. Then the .Ioads are applied.
The reactions which aríse are directed to the
left, N1 at L and N2 at H. On the joints these
forces are directed to the right-

The member loads deliver on the joints acting
primary fdrces FPLH and FPHL with an assumed
direction as the construction axis X to the
right. So on the member ends they are opposite
directed, to the 1eft.

Force vector f is now fifled with joint l-oad
forces and primary forces:
the L-th element Í^tith FL+FPLH: FL+N1 . C and
the H-th element $tith FH+FPHL: FH+N2.C.
See fig.3a preceding page.
c=DI/LL:+I
Forces N1 and FPLH acting on joint L, and the
forces N2 and FPHL acting on joj-nt. H have the
same direction.
When the member end forces ELHX and FHLX as
resu.l-t of the joint displacements are
calculated they together with the primary
forces will give the final- member end forces.

FLHX becomes FLHX-FPLH: FLHX-NI.C
FHIX becomes FHLX-FPHI: FHLX-N2,C

Eig. 4b.
Now the member end numbers are exchangêd. The
member axi-s x is directed from lowest to
highest mernJcerend number, thus to the 1eft,
The assumption for the dlrection of the member
l-oads is that of the member axis x. The reac-
tion forces N1 and N2 acting on the member ends
are now directed to the right, so on the joints
to the left.

The elements of the force vector are now also
the L-th element with FL+FPLH: EL+N1.C and
the H-th element. with EH+FPHL: FH+N2'C.
See fig. 3b.
c:D7/L1,:-7
The on joint L acting forces N1 and FPLH are
opposite directed, and
the on joint H acting forces N2 and FPHL are
opposite directed.

For the final member end forces follows:
{a

FLHX becomes FLHX-FPLH: FLHX-N1'C and
FHLX becomes FHLX-FPHL: FHLX-N2.C.

The on the member ends acting forces N1 and
FLHX have the sarne direction and must be sum-
med/added, That's right because C:-1.
The same applies for N2 and FHLX.

/u2,y/

FtHX

tvz
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3 2P *4 X
Exampl-e.

Fig. 1 .

The construction consists of tvto members with
equal- length and the same straln stifness 4EA.
The three joints are numbered I' 2 and 3 (step
1) but arbitrarely to explain the preceding
page,

The member stiffness factor is
R:4EAl1,1:4EA/ 4=T.

On the left for both members the relation
f : s5 u is given.
Both sets of equations will be composed to a
set of three equations with memberend forces
and displacements in order I, 2, 3.

The joint load forces are aI)- zero.
F1:O KN Ez:O KN F3:O KN

Fig. 2a .

The second member j-s loaded with a to the right
directed member load force of 20 kN.
Member axis x is directed from L to H, from
joint 2 to joint 3. For the member l-oads it was
assumed that they are directed as the member
axis x. From that folfowed the assumption that
the forces N1 en N2 are opposite directed to
the x-axis, N1 at the lowest, N2 at the highest
memberend number.

NL:- (20*2,4) / 4: -12 kN

€4

4zt

=EA

:EA

?€4

L

F,g tR

R IH

H

g

F13X

F31X

E2

F3

S5

Lr l[,
u

t"l t
,-l:"ol-'^t 

I

7

1

-1

1

F13X

F23X

F31X+F32X

=EA

1

0

-1

0

1

-1

CC

-1

-1

U1

U2

U3?

ut
MI 20 ,Ul3

2

F1

E2+F'P23

F3+FP32

U3

N2:- (20*1, 6\ /4: -B kN
and
(see formula _pa_ge 45.)

0

0

2

é

F"ig.2a.

Fig.2b -

On joint 1 acts F1:0, and

on joint 2 acLs E2:0 and the primary force
Fp23:N1.C, and

on joint 3 acts F3:0 and the primary force
FP32:N2'C-

The origin of construction axis X is joint 1,
so the joint coordinates are known.

F13X

F23X

F31X+F32X

0

0

B

1,2

x1-(1):0m xl (2):Bm x1 (3):4m

EA 1

1,

0

n

ol

'l,)
E

1

ul,

U2

u

For the second member is
D1:X1 (H) -X1 (L) =XL (3) -x1 (2):4-B: -4 m, and is
C:DL/L1:-4 / 4:-!.

Then the primary forces beeorne
rP32:N2'c: (-8) (-1)= B kN and
Fp23:N1 .c: (-L2l (-l_ ) - 1"2 kN.
The load of 20 \N causes on the joints 2 and 3
primary forces directed to the right indeed.

Fig. 3.
The force vecor is filled with joint load for-
ces and primary forces.
Construction matrix CC wil] be altered because
of the prescrlbed displacements U1=0 and U2:0.
Finally there is one slngle equation 1eft.

EA(0*U1+0*U2+2*U3):A2 from which foll-ows
U3:6/E'A.

0

cc

Fiq.3.

"F32F2!+ +-trJ2a F23x-

FÉ-z r-Á-J

Fiq. 2b

/3



F(3X / o FJ/X
1,8. Member ênd forces with respect to con-
struction axis X.

FÍ9. 4 .

Fig. 4 .
By means of f : 55 u for the first member one
finds
F13X:EA ( 1*U1-1*U3 )

:EA(0-1 (6/EA) ):-6 kN,
a negative answer, so not as assumed direc-
ted to the right but to the -l-eft, and

F31X:EA ( -1*U1+1*U3 )
:EA(0+1 (6/EA) ): 6 kN,
a positive answer, so as assumed directed
to the right.

There are no member loads so that these forces
are the final member end forces.
Fig. 5a.
For the second member foll-ow
F23X:EA ( 1*U2-1*U3 )

:EA(0-1 (6/EA) ):-6 kN' not directed to the
right but to he left, and

F32X:EA (-1*U2+1*U3)
:EA(0+l- (6/EAl ): 6 kN, directed to the right
as assumed.

These are member end forces caused by the dis-
placements alone I

Fiq. 5b.
The on the joints acting primary forces are
assumed to be directed to the right like is
assumed for joint foad forces and the X-axís.
On the member ends act forces equal- in
magnitude but opposite directed, so to the left
On the preceding paqe was found
EP23= I kN and FP32=12 kN which are the
resuit of the member 1oad.
The final member end forces are found by adding
fig.Sa and 5b.

Fig.5a

Fiq. 5b

Fig. 5c

Fig. 6a

Fig.5c.
F23X becornes F23X-FP23=-6-(-B) :-14 kN, not
directed to the right but to the l-eft.
The force pushes on member end 2.
F32X becomes E32X-FP32: 6-{-12\: -6 kNr not
dÍrected to the right but to the l-eft.
The forse pulls on pember end 3.

Member end forces w.r.t, member axis x.

Fig.6a. (see also fig .4. ) The first member,
Fiq. 6b D1:x1 (H) -x1 (L):x1 (3) -x1 (2)=4-0: 4

c=DI /LL:A / 4:+1
FLHx: FLHX.C F13x: F13X'C:-6(+t1:-6 kN, so
not as assumed from L to H, as the x-axis, but
opposite directed, to the left.
FHLx: FHLX.C F31x: F31X'C= 6(+1): 6 kN, so
as assumed directed as the x-axis to the right

/9 Fiq.6b. (see also fig .5c.) The second member
Dl=xl- (H)-xl- (L):xl- (3) -x1 (21:4-B:-4
c=DL/Ll:-4 / 4---I
FLHx: FLHX'c E23x: E23x'c:-I4 (-1):14 kN' so
as the x-axis directed to the left.
FHLx :FHLX'C F32x: F32X'C: -6(-1): 6 kN, so
as the member axis x directed to the left

Fig. 7 .
The normal force diagram. Left of the concen-
trated load a tension force of 6 kN, right of
it a cornpressÍon force of 1"4 kN.
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- Private Sub MEMBERO

'Calculation of the reactions due to
'member loads along the member.
N1:0 : N2:0
'The concentrated l_oads.

; For I=L To NFA(P)

I F5:F55 (P, I) : L5=L55 (Pr I)
I N4=F5*L5,/L1 : N3=F5-N4
I nf=I.Ir+r.r:: N2=N2+N4L Next I

qÁ

trO.to.

Y*.4
'u''

1.9. Private Sub MEMBER0

Subroutíne for the calculation of the reactions
N1 and N2, of the at both ends holded/fixed
member as result of member loads along the
menÈer. The prlmary forces are opposite dj-rec-
ted to N1 and N2, see page )2.'For a member P there are
NFA(P) concentrated 1oads, and
NQA(P) distributed loads.

Fig.1 en 2a.
For each load case the reactions N3 and N4 are
calcul-ated and added to preceding values of N1
and N2; in the beginning they are set N1:0 and
N2:0.

The concentrated .l-oads

Fig.2a en 2b.
For I=1 To NFA(P)
The load forces are F55(P,I) and the distances
are L55(P,I). For convenience is written
F5=F55 (P, I) ' 15:151 (P, I)
On the member fixed on the left act a load F5
and the unknown reaction N4 at member end B.
Acts alone force F5 then part AC becomes longer
and C will displace over V1 to the riqht.

With Hooke is 
^L:ELIEA, 

then follows
V1:F5*L5lEA
(EA is modulus of elastj-city E ti-mes member
cross-section A, )

Part CB is not loaded, so also B displaces over
V1 to the right.

Acts alone the to the left dírected force N4,
then B will displace over Y2 to the feft.
v2:N4 *L]-,/EA

The displacement of B must be zero, thus
V1-V2:0 or F5*L5,/EA-N4*L1,/EA:O so that
N4:F5*L5lL1.

W X hor, :0 follows N3-F5+N4:0 so that
N3:F5-N4.

The calcul-ated forces N3 and N4 are added to
the preceding values of N1 and N2. Then the new
values become
N1:N1+N3 : N2:N2+N4.
And then the fol-lowÍng concentrated load with
Next I.

The distributed loads. (see also next page)

Fig. 3a
This time N3 and N4 are calculated for each
distributed load.
For I:1 To NQA(P)
Q6:Q66 (P, I) : Q7:Q17 {P,I)
L6=L66(P,I) : L'l:L'l'l (P,tl

Fig.3b.
ff the member fixed at the ]eft end is loaded
only with the distributed load, then D and B
will displace over V1 to the right.

*4
/ff{euJ
--f----i-

A6é r)

ta

1t Vl

L7i(n

r_
ni't-

EV

VT
-+.--i-

ít

,1/t

.2A

€A

&9_

a

-+Vz

Fiv 3l

/5



'The distributed l-oads.
For r:1 To NQA(P)
Q6=Q66(P,Il : L6=L66(P,I)
Q7:Q71 (P,I) : L7:L-77 (PrI)
F=. 5* (Q6+Q7 ) *L? : V3:F*L6,/EA

V5:Q7*L7^2 / l2*EA)
V6: (Q7-Q6) *L1 ^2/ ( 6*EA)
V1:V3+V5-V6

N4:V1*EA,/Ll : N3=F-N4
N1:N1+N3 : N2=N2+N4
Next I

- 
End Sub

Fig. 4 .
The forces al-ong the mernber of the trapezium
Iike dívided distributed load delivers force F
at C.

The area of the trapezium is
F=0.5* (Q6+Q? ) *L7

Acts only force F then C and B will displace
over V3 to the right.

With Hooke is AL:FLIEA so that V3:F*L6IEA

Fig.5a,5b en 5c.
Next the member is thought to be clamped at C

and is the displacement of D cafculated due the
forces alongi part CD.
The displacement of D, and of B, is V1:V3+V4.

To find V4 the trapezium like load is divided
in a rectangular load directed to the right,
and a triangiular load directed to the feft.

The rectangle

Fig. 5b.
The to the right directed forces of te rectan-
qular l-oad do displace D an B over V5 to the
riqht. With the formula of page t5 fol-Iows
v5:Q7*L7^2/ (2*EA) .

The tri-angle

Fig. 5c.
The triangular load with forces directed to the
left give D and B a displacement over V6 to the
left. l9ith the formul-a foLlows
v6: (07-Q6) *L7^2/ (2*EA) .

The effect V4 over CD due to the trapezium is
equal- the effect V5 of the rectangJ-e lessened
with the effect V6 of the triangle.
V4:V5-V6 With V1=V3+V4 follows V1:V3+V5-V6.

Finally the effect Of force N4 which gives a
displacement of B over Y2 Lo the 1eft, fig.3b.
V2:N4 *L1,/EA

The displacement of B must be zero

V1-V2:0 of V1-N4*L1,/EA=0 from which
N4:V1*EAlL1.

I hor. :0 gives N3-F+N4:0 so that
N3=F-N4.

The this way calculated N3 and N4 are added to
the previous values of Nl- and N2,

N1=N1+N3 : N2:N2+N4

and then the next distributed load with

Next I

And the end of the subroutine with

Q6 a/

/.6 L7 ,tl ,.T--t

Fc

y's
--1--+

r

v3--+
Eig.4

o. OB
t/u v4-+ -+

Fig.5a.

a/
DB
t $ ,/,f
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-D3

av-qe V6 Vê#+

Fiq. 5b.

Fig. 5c

End Sub
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1.10. Private Sub N5XX ()

Cafculation of the normal force at X meter from
memberend L.

Fig. 1.
The main calculation, see paqe 22 , delivers
for a member P

member end force NAA(P,1) at member end L, and
member end force NAA(P,2) at member end H.

9n/. tv'ÁAn ,) Fiq.1.

/vf q tVz et

-,.<- Eig.2a

Ff
,vF*e,vf

Private Su-b N5XX ( )

'Calculation of the normal forcerat X meter from member end L.

NS:BN : N7-BN

'The concentrated 1oads.
For I:1 To NFA(P)
F5:F55 (Pr r) : L5:L55 (Pr I)

If X>L5 Then
N5:N5+F5 : N7:N7+F5
Elserf X:L5 Then
N7:N7+F5
End If

Next I

tr5

x

Eí9.2b.

Fiq .2a.
On cross-section C acts from left onto right a
normal force N5 with a direction as asslrmed for
the member end forces NAA(P,1) and NAA(P,2).
On section C' acts from teft onto right a nor-
mal force N7 with a direction as well as assÈ-
med for the member end forces NAA(P,1) and
NAA(P,2). /
On sectioy'C acts from right onto left a normal
force as f,arge as N7 but opposite directed.
lÍhen appÀying a rea]- sectíon and seperating the
two parts then on the sections of the two parts
always act forces as large as but opposite
directed.

Eig .2b.
Acts on section C a load force F5, as assumed
directed from L to H, then fo1]ows wit.h hori-
zontal equilibrium of section C

N5+F5-F7:0 which gives N7:N5+F5.

Said in another way, the on section C' acting
as assumed to the right directed normal force
N7 is equal the resultant of N5 and F5, so that
N7:N5+F5.
Acts one more member load force F5 then N7 be-
comes larger, and F5 is added to the previous
va]ue of N7 with N7:N7+F5.

The start values of N5 and N7' when X:0, so at
member end L. are BN-NAA(P'1) which musÈ be gi-
ven before calling subroutine N5G page l/Íith
this subroutÍne normal forces are calculated
every G meter usj-ng the just considered subrou-
tine N5xx.

Normal force NAA(P,l) pushes on member end t
because the force 1s directed as assumed from L
to H. That happens to be the sarne direction
as that of member axis x at L. A-Iso the normal
forces N5 and N7 are compression forces as
assumed. (It could have been different if the
assumptions would have been different.)

The concentrated loads

Fiq. 3a.

For I=1 To NFA(P)
F5:F55(P,I) : t5:L55(PrI)
Fig.3a.
If X<L5 then N5 and N7 stay egual.
If X>L5 then become N5:N5+F5 and N7:N7+F5.
Fí9.3b.
Elself X:t5 Then In that sase N5 left of the
section does not change, but N7 riqht of the
section does, so that N7:N7+F5,
End ïf and then

Next I for the following concentraLed load.

X =/-S

F5

Fí9. 3b
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'The distributed loads.
For f:1 To NQA(P)
Q$:Q66(P,I) : L6:L66(P,I)
Q7:Q77 (P,r) . L7:L77 (P,Í)
ïf X>L6 Then
If X>L6 And X<:L6+L7 Then
oB:Q6+ (Q't-Q6) * (x-L6) /L7
T:0 . 5* (Q6+QB ) * (X-L6 )

N5:N5+T : N7=N7+T
ElseIf X>L6+L7 Then
T:0.5* (Q6+Q7 ) *L7
N5:N5+T : N7:N7+T
End If
End If
Next f

IN5:D*N5: N7:D*N7]

End Sub

The distributed loads.

For f:1 To NQA(P)
Q6:Q66 (P, r) : L6:L66 (Pr I)
Q7:Q77 (P, I) : L7:L77 (P, I)

Fig. 4a.
Is X<:L6 then N5 and N7 do not change because
the distributed loads is applied rjust on the
right sider of the section.
FÍ9.4b en 4c.
When X is larqer than L6, then N5 and N7 chanqe
and one of the two possible calculations j-s
carried out. Therefore the first ff-End F with
If X>L6 Then.

The fj-rst possibility.
Fiq. 4b.
If X>L6 And X<:L6+L7 Then
A part of the distributed 1oad, the trapezium
left of the section does change N5 and N7. For
that QB is calculated.
With congruence of t.riangles follows

a/ (Q] -Q6): (x-L6) /L] f rom which fol-l-ows

a: (Q7-Q6) * lx-t'6) /L7 so that

Q8:Q6+ (Q7-Q6) * lx-L6) /L7 .

The to the right directed resultant T of the
distributed load l-eft of the section is equal
the area of the concerninq trapezium.

T:0.5*(Q6+QB)*(X-L6) N5 and N7 change with

N5:N5+T : N7:N7+T.

The second possibility.
Fig. 4c.
El-self X>L6+L7 Then
Now the total distributed load is on the left
side of the section. Resultant T then becomes

T:0.5*(Q6+Q7)*L7 and also now follows

N5:N5+T : N7=N7+T. And then

Next I for the following distributed load,

(With the assumed directions for N5 and N7
foltows that they are compressÍn,.forces, If af-
ter calculation of N5 the answertpositiv, then
the assumption was correct so the force is a
compression force. The same applies for N7.
Saying before a calculation that a compressi-on
force i-s 'negativr, is premature.
But if one wants as result of the calcul-ati-on
shown here a 'negative' answer when it concerns
a compression force, then it is possible, buL
now and not earli-er. When one writes before the
calling of this subroutine D:-1, and after
Next I N5:D*N5 : N7:D*N7, only then a nega-
tive answer means that the force is a compres-
sion force.
Or. ,. adjust the assumptions, N5 and N? pul1 at
the section, then with opposite direction, notl
L-H as the member axis........., and then adjust the
code for cal-cul-ations.........One may do so.)

/-x

X
t6 17
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Private Sub N5Go
ICalcuLati-on of the normal forces
'every G meter.
L:LL(P) : H:HH(P)
D1=x1 (H) -xl- (t) L1=Sgr (D1^2 )

NA:O (or L1:L11 (P) )

For XG:O To t1+G Stêp G

If XG:O Then
X:XG : N5XX page
NA:NA+1 : LA(P'NA):X
NAL(P'NA):55 : NAR(P,NA)-N7
Elseïf XG>O And XG<:LI- Then
C1:1
For I1:1 To NFA(P)
L5:L55 (P, IL)
If L5>XG-G And LS<:XG Then
X:L5 : N5XX
NA:NA+I : LA(p,WA):X
NAL (P,NA)=N5 : NAR(P,Ne) :N7
If L5:XG Then C1=0
End If
Next 11
ïf Cl-:1 Then
X:XG : NSXX
NA:NA+]-: IÁ(P,NA):X
NAL (P'NA) =N5 : NAR(P'tqe) =N7
End rf
ElseIf XG>L1 Then
For I1-1- To NFA(P)
L5:L55 (P' rl-)
If LS>XG-G Ànd LS<L1 Then
X=L5 : N5XX
NA:NA+]. : LA(P,NA)=X
NAL (P,NA) =N5 : NAR(P,NA)=N7
End If
Next 11
rf XG-G<LI Then
X:L1 : N5)G
NA:NA+I :LA(P'NA) =X
NAL (P,NA):N5 : NAR(PrNa)=N7
End rf
End If
Next XG : NAC(P):NA
End Sub

l-.11. Private Sub N5Go

Calculation of the normal- forces in successive
sections each G meter, and at the places of the
concentratêd loads.

Fiq.1.
The number of sections is counted with NA which
will be stored at the end with NAC(P):NA. To
begin with NA=O.
Member length is Ll=L1i. (P) 

' or calculated.

For XG:O To Ll+G Step G

lrlith subroutine NSXX are calcufated at distance
X from menber end L,
normal force N5 left of the section' and
normal force N7 right of the section.
First the calculation for XG=0.

If XG:O Then
First becomes X:XG and then follows subroutine
N5XX.

NA increases with l- with NA:NA+1=0+1-:1 and dis-
tance X is stored with LA(P'Ua)=X.
N5 and N7 are kept with
NAL(P'NA):N5 : NAR(P,NA)=N?.
(Or start values at mêmber end L with X:0 and
N5XX/ NAI (P,NA) :BN and NAR(P,NA) =$$. )

Fig.2 and fiq.1.
ElseIf XG>O And XG<:LI then
Uíith C1:1- it is assumed that there's no load
force F5 with di-stance L5:XG.
Then for all loads rl_=t To NFA(P) is checked if
there j-s a load force after section C up to and
including section D with
If LS>XG-G And LS<:XG.

If a load force is found then X:L5 and the
normal- forces N5 and N7 are calculated with
subroutine N5XX.
For 11: and not For I: because f is used in
subr6itine Nsxx.

If case LS:XG Then C1:0 which means that for
that section a calcul-ation is carried outf thus
a second calculation omitting. If C1 stays C1:1-
then for that section follows after Next Ï1-
the calculation of the concerning N5 and N7 for
X:XG.

Fig. 3 .
Elself XG>LI- Then
The last part of the member is checked' again
For I1=1 To NFA(P) and then
If LS>XG-G And L5<L1.

At distance LL, the mêmber end, will not act a
concentrated load but on thê connected joint
can act a joint load force.
Again all member Ioad forces are checked and
when L5 satisfies lf-And-Then then X=L5 and
follows again N5XX.
After Next IL another check If XG-G<L1 Then.
If so then X:t1 and again NsXX.
After Next XG the total number of sections
NAC(P):NA and finally
End Sub.
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member 2

menlcer 3

fn,n 4

Lt4 s

member 4

Private Sub CONSTRMATCCAXMEMBER

N:N9
For I:1 To N : For J:1 To N

CC(I,J):O : Next J : Next I
FOR P=1 To P9 : L=LL(P) : H:HH(P)
EA:EAA ( P)
MEMBERMATSsAXMEMBER
TT (1):L : rT (2):H
For f:1 Io 2: I1:TT(I)
For J:1 To 2 : Jl:TT(J)
CC (I1' J1 ):CC (I1-' J1 ) +S5 (I' J)
Next J
Next I
Next P

End Sub

1. 12. Private Sub CONSTRMATCCAXMEMBERo

Fig. 1 .
The construction cons.ists of P9:4 members and
N9:5 joints. There is 1 displacement for each
joint, the number of equations then is N:N9.
The dimensions of construct.ion stiffness matrix
CC are N x N. First all elements of CC are set
zero.
For I:1 To N : For J:1 To N

CC(I,J):0 : Next J : Next I
For each member P:1 up to and including P9 is
the lowest member end number L-LL(P) and
the highest member end number H=HH(P), and the
strain stiffnes is EA:EAA(P).

vilith the subroutine
MEMBERMATS5AXMEMBER (see next paqe)
for a member member stiffness matrix 55 is fi1-
Ied, which wil-l- be put in rnatrix CC after that,
first the first row with I=1 and next the
second row with I:2,

With I1:TT(1) the row number of matrix CC, and
with J1:TT(2) the column number of CC is deter-
mined.
TT(1):L: rr(2):H
With CC (I1-, J1 ):CC (11r J1) +S5 (I',1) the elements
of matrix CC are formed.
The new value CC(II-,J1) is equal the 'o1d' pre-
ceding value of CC(ï1,J1) added with the value
s5 (r, J) .

On the left the maLrices 55 of the 4 members
are qiven of whj-ch the e.l-ements are indicated
with row and column numbers of matrix C.

For member P:1 with L:LL(1):1 and H:HH(1):2
fol1ow
Tr (1):L:1 and rT (2):H:2.
The first row of 55 to C.
I:1 I1:rT (I):TT (l-):1
J:1 J1:TT (J):rr (1"):1 CC (1,1): 0 +S5 (1,1)
J:2 J1:TT (J):TT (2):2 CC(7,2t'= 0 +s5 (1' 2)

2

rr2
)t

,
3 +

J1

member 1

Fiq. 1" .

2

J

r f-r, r
lt,t

rr fr, r
1,,' À

3,41
4,41

-_J

L;
Ln, 

t

S5

fr,r z,31
l12 3,3IL-J

5
5

t

E

'1 2345 12345

The second row of 55 to C.
r--2 r1:TT(r):TT(2):2
J:1 J1:rr (J) :rr ( 1) :1 CC (,2 , L):
J:2 J1:rr (J)=TT(2):2 cc(2,2):

0
0

+s5 (2,1)
+s5 (2 | 2)

1

2
)
4

5

xx
xx

For member P:2 with L:LL(2):2 and H=HH(2):3
foIlow
TT (1):L:2 and TT(2):H:3.
The first row of 55 to C.
r:1 r1:TT (1 ):2
J:1 J1:Tr(1):2 cc(2,21:CC(2,2)+S5(1,1)
J:2 J1:TT (2):3 CC(2,3''t= 0 +S5 (1,2)
55(2,2) of member 1 coincides with 55(1,1) of
member 2.

The second row of 55 to C.
t:2 r1:TT (2 ) :3
J:1 J1:TT(1):2 CCtr3,2): 0 +S5(2,1)
J=2 JT:TT Q):3 CC (3 

' 3 ) : 9 +55 (2,2)
And so on.
Ttrree times two e]-ements of 55's coi-ncide on
the main diagonal of matrix CC.

xx
XX

cc
after member 1 after member 2

after member 4

2o



cc
after menber 1

x

after memicer 3 after member 4

- Private Sub MEMBERMATSSAXMEi4BERo
Dl=XL (H) -X1- (L)
L1=Sqr (DL^2)

Fí9.2.
Suppose that the numbering of the joints is a
bit irregular as shown on the left, then the
construction matri-x CC will fook dlfferent.
Here be-low row and colurnn numbers are give for
each member.

L rr (1) H rr(2)

In the four member matrices 55 the elements are
indicated with row numbers 11 and cofumn num-
bers Jl of matrix CC.

Member 1- with row and colurnn numbers 1 and 3.
Matrix 55 is placed in C.
CC(1,1): 0 +S5(1,1-) CC(1,3)= 0 +S5(1,2)
CC (3,1): 0 +S5 (2, 1) CC (3' 3): 0 +55 (2,2)

Member 2 with row and solumn numbers 3 and 5.
Matrix 55 of member two is placed in CC.
CC(3,3):CC(3,3)+S5(1,1) CC(3,5): 0 +S5(1,2)
CC(5,3): 0 +S5(2,1) CC(5,5): 0 +55(2,2)

Member 3 with row and column numbers 4 and 5.
CC(4,4): 0 +S5(1,1) CC(4,5): 0 +S5(1,2)
CC(5,4): 0 +s5(2,1) cc(5,5)=cc(5,5)+s5(2,2)

Member 4 with row and column numbers 2 and 4.
CC12,2): 0 +S5(1,1) CC12,4l: 0 +S5(l-,2)
CC(4,2): 0 +S5(2,1) CC{4,4):CC(4,4)+55(2,2)

The vafues of the third, fifth and fourth dia-
qonaf element chanqe two times.

The el-ements of the main diagonals of the mem-
ber mat.rices 55 arrive on the main diagonal- of
matrix CC. When the last matri-x 55 has been
placed in CC all elements on the main diagonal
have become unequal to zero,
(With continuous beams, and frames, j-t is pos-
sible that there are stilf zeros on the main
diagonal after construction matrx CC has been
composedf r., i.l!-'
Elements left and right of the main dj-agonals
of the matrices 55 arrive at places outside the
main diagonal of CC and never coincide.

Next the subroutine with which the member
stiffness matrices 55 are fill-ed.

1.13. Privatê sub sA)O{EMBER ()

Fig. 3 .
D1=xL (H) -Xl- (1,) is the member length which can
be negatJ-ve, the case for member 4. Thderefore
member length L]- is calculatêd with
tl:Sqr (D1^21 .
The elements of member stiffness rnatrix 55 are
the stiffness factors R:EA/L with a + or - sign
as given on the left, see page 2

55 (1-, 1)=R : 55 (1' 2;:-p : 55 (2, J-):-g : 55 (22):R

3 c

s5 ( 1, 2; =-g
35 (2,2,t:R

t2

Fíq.2
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member 1

- End Sub

L

f t- 4,sl
I s,4 5,5 IL 
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[* il]
member 2

fr,r 2,4f
Ln '' Lr)

member 3

R:EA/LL
S5 (1' 1) =a 3

55 (2,1;:-q

L2345 12345

member 4
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x

after memLrer 2
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xx
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2/



1

2

)

4

5

1

2

3

4

5

Private Sub AXIUAïNCALCo

'1-.Composition of construction ma-
'trix CC with member matrices 35.

CONSTRMATCCAXMEMBER

'2, E]ements of force vector FF
r2a. Joint l-oad forces FX(I).
N:1 *N9
For f:1 To N9
A:1*f
FF(A):FX(Ï)
PP(A):PH(I)
UU(A):UH(I)
ss (A) :sH (r )

Next I

+-x

1.. 14 . Private Sub AXMAINCAÍ,C o

With this subroutine the main calculation is
carried out for axíal l-oaded members with coin-
ciding axes.

The first step is the subroutíne

CONSTRMATCCAXMEMBER (see page 19 )

with which construction stiffness matrix CC is
formed by using the member stiffness matrices
s5.

2. The elements of force vector FF.
2a, The joint l-oad forces,

Fig. 1- .

There are N9 joi-nts. There is one possibfe dis-
p-lacement UH(I) for each joint ï, thus the
number of equations is N:1*N9.

First for each joint are put in
The joint load forces FX(ï),
PH(I):i- if the displacement 1s prescribed,
PH(I)=0 if that is not the case,
the prescribed displacement UH(I), and
UH(I):0 if it is not prescribed, and
the spring constants with SH(f) and SH(I):0 if
that does not appJ-y.
They are placed in total vectors FF, PP, UU and
SS with A:1*I.

(Trusses can have two joint load forces, FX(I)
and FY(I), and two displacements per joint,
UH(I) and UV(I), etc. In that case A=2*I-

Here FF and FX etc. have the same si_ze

2b. Primary forces due to loads paralle]- to the
member axis.

Fí9.2a.
For each member P:1 To p9 the strain stiffness
is EA=EAA(P). with D1:X1(H)-X1(L) are first
calculated Ll:Sqr(D1^2) and C=D1,/L1.

With the subroutine
MEMBER lsee page /f ) the reactions NL and
N2 are calcufated.

Eig -2b.
The assumptions for the direct.ions of the on
the joints acting primary forces D7 (Pt1) on
joint L and D7(P,2) on joint H is to the right,
the sarne as that of the joint foad forces
F"x (r) .

On the member ends act forces as large as but
opposite directed forces, so to the 1eft.
The directions of the on the ernber ends acting
forces N1 and D1(P,I), and N2 and D7(P,2) axe
the same. So one can write

D? (P,1):N1*C : D7 (P,2):12*g

And then simi-lar for each member

FF (A)

FF
PP
UU

SS

FX (2)
FXQJ

Fig. 1.

Èi2,2a

I
J 1

F)(
PH

UH
SH

// / .Ua

Fx(z)
-._17(4r)

o7A,

on/e 2)

.Ê

w
-___> I

aie2)

.tr>,l!
'2b. Primary forces due to membertloads alongr the member axis.
'staafas .

For P:1 TO P9 : L=LL(P) : H=HH(P)
EA:EAA ( P)

Dl:Xl (H) -Xl (L)
Ll-:Sqr (D1^2) : L1j- (p):L1
c=DL/LL

MEMBER (reactions N1 and N2)

D] (P ,1):N1*C : D7 (P,2):y12*g
Next P

Next P
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FX&J
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DV(8/)

FXIH)
-+4-zFe2J

uu(4) FF(4)

hss.

'2c.Afteration 0f force vect.or FF.
For I:1 To N9
A=1*I
For P=1 To P9 : L:LL(P) : H:HH(P)
If r:L Then
FF (A):FF (A) +D7 (P, 1)
ElseIf I:H Then
FF (A):FF (A) +D7 (P,2)
End If
Next P
Next I

2c. Alteration of force vector FF

Fig. 3 .

For each joint I the primary forces D7(P,1) and
D7 (P,2) are added to an efement of FF. The ele-
ment number is A:1*f.
For each joint I all members are checked if
they deliver a primary force on the joint. (Af1
members, not necessary, but of more importance
when dealing with trusses. )

ff I:L then becomes
FF (e1 =PP (A) +D7 (P, 1) and
i-f I:H then becomes
FF (A) :Fr (A) +D7 (P,2) .

After the last member P9 is checked fo]l-ows the
next joint with
Next I.

3. Alteration of force vector FF and construc-
tion matrix CC-
3a. Of FF i-n case of prescribed displacements
unequal t.o zero, ()0.

Fiq. 4 .
For t.hat the totaL vectors UU and FF are used..
because it will be done the same way with other
constructions,
If for I:4 displacement UU(4)<>0 is prescribed,
then PP(4):1 was put in, then each element
FF(K) must be lessened with
CC(K, I)*UU(I), so here with CC(K,4)*UU(4) for
K:1 To N.
K:1 FF (1 ):PP (l-) -CC (1,4 ) *UU (4 )

K:2 FF(2):Fr (2) -CC(2,41*UU (41
K=3 FF (3):PP (3) -cc (3.4) *UU (4 )

R:4 FF (4 ):PP (4 ) -CC (4,4 ) *UU (4)
K:5 FP (5):FF (5) -Cc (5.4) *Us 14;

3b. Of FF and CC j-n case of prescribed displa-
cements.
Fiq. 5.
If PP(ï):1 then displacement UU(I) is pres-
cribed.
If PP(4):1 then the fourth row and the fourth
cohunn of matrix CC are filled with zeros.
For I:1 To N and For J:1 To N then follow
CC(I,J)=0 : CC(J,I):0.

I:4 J:1 CC(4'1):0 : CC(1,4):0
J:2 cC(4,2):0 : cc (2'4'l:0
J=3 CC(4,3):0 : CC(3,a):0
J:4 CC(4,4):0 : CC(4,4):0 (that's
two times, but does not matter)
J:5 CC(4,5):0 : CC(5,4):0

After that the element on the main diagonal i-s
made CC(Ï,Ï):l-, so for I:4 with CC(4,4):1, and
the fourth element FF(4)m of FF gets the value
of the prescribed displacemenL, zero or not
zeÍo,
FE(I)=UU(I), here FF(4):UU141 .

3c. Of CC in case of efastic/sprinqy supports.
If SS(I)>0 then SH(I) is the spring constant
put in which must be added to the concerning
el-ement CC(f,I) of the main diagonal.
If SS(I)>0 Then CC(r,I)=CC(I,I)+SS (I)

Now the set of N:1*N9 equations got ready to be
sol-ved,

t"

5 Fiq. 4

FF (1)

FF (K)
uu(4)

UU FF

'3. Alteration of force vector EF
'and constructíon matrix CC.
'3a, Of FF in case of prescribed
'displacements <>0.
For f:l To N
If UU(I)<>0 Then
For K:1 To N

FF (K):FF (I() -CC (K, I) *UU (ï )

Next K
End ïf
Next I

Jtí-

1
2
3
4

5

I2

000

34

. cc(1,4)

. cc (K, r)

. a"tt,nl

cc

I
1
2
3
4
5

0
0
0
1
0

0

t

Fig. 5

'3b, Of FF and CC in case of pres-rcribed displacements.
For f=1 To N
rf PP(r):1 Then
For J:1 To N
CC (I, .I) :0 : CC (,I, f 1 

:g
Next J
CC(I,I):1 : FF{I):UU(I)
End If
Next I
'3c. Of CC in case of el-astic/
'springy supports.
For f:L To N
If SS(r)>0 ?hen _
CC (r, I):CC (I, I) +SS (I)
Next I
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'4 . Cafculati-on of the unknown
'displacements UH (l) .

For I:1 To N : BB(I):FF(I)
For J:1 To N
AA(T,J):CC(f,J)
Next J
Nextf Ax:b is Cu:f

UU (A) uH (2) XX (A)

UU UH XX
'The so]ution of the N:1*N9
'equations.
GAUSS
For f:1 To N9
A:1*I
UH (I ) :XX (A)
UU (A):XX (A)
Next I

I 5. Calcul-ation of the memberend
'forces w.r.t. construction axis X.
'5a. Due to the displacement.s
t a.Ione.

4. Cal-culation of the unknown displacements
uH (r) .

In behalf of the vector BB and matrix AA useci
in the subroutine GAUSS
vector BB is fil-1ed with the elements of force
vector FE, and
matrix AA with the elements of constructlon
matrix CC.
4a. The solution of N equations.
With the subroune GAUSS the unknowns of vector
XX, is x, solved and placed in UH(ï) and UU(A).
{remark A l
5. Calculation of the member end forces w.r.t.
the construction axis X.
5a. Due to the displacements alone.
Fig. 6a.
The re]ati-on between member end forces and dis-
placemenLs is f : 55 u.
For each member the stress stiffness is
EA:EAA(P).
With the subroutine
MEMBERMATSsAXMEMBER (pase 2l )

member matrix 55 is formed.
Member end force FK(P,ï) 1s equal row f of 55
times column u,
with Tr(1) anE TT(2) the elements of u are got-
tên from total vector/column UU.

It:ttlX
,F({44t

*/ [ttx
For member P:2 ís
TT(1):1*L:2 and
I:1 A:TT {J)
J:1 A:rr (1):2
J:2 A:TT (2 ):3
I:2
J:1 A:2
J:2 A:3
(Or with R:EA,/L1 ,

L:2 and H:3.
TT(2):1*H:3.
FK(P,I):FK(2,1):0
EK(2,I): 0 55 (1,1) *UU (2)
EK(2,1):Fr.(2,1) +S5 (1,2) *UU (3)
FK(P, r):Er.(2,2):0
EK(2,2): 0 +S5(2,1)*UU(2)
FK (2 

' 
2):TK (2 ,2 ) +S5 (2 ,2) *UU (3)

FK(P'1): R*UH(L)-R*UH(H) and
EK(Pt2) =-R*UH (L) +R*UH (H) . )

FLHX
FHLX

f"*,n, r,l t
l_rx 

te, z r_l 
L

(1, 1)
(2,I)

(I ,2')
(2,21

FRlÊ L)

l[rnr]
I fuu ,o,l
J [uu 

tar 
]

I tR
] L-R

_R

R

uf

?

S5

5b. Due to displacements and member loads
the member axis.

a-log

e 3

t \ ,/

Fig. 6a.

For P:1 To P9 : L:LL(P) : H:HH(P)
EA:EAA (P)
MEMBERMATS5AXMEMBER
TT (1):1*L
TT (2 ):1*H
For I:1 TO 2 : FK(P,I):O
For J:1 TO 2 : A=TT(J)
FK (P' I):FK (Pr r) +S5 (r, J) *UU (A)
Next J
Next ï
'5b. Due to displacements and mem-
'ber l-oads alonq the member axis.
D5 (P, 1) =FK (P' 1) -D7 (P' 1)
D5 (P, 2l:FK (P, 2) -D7 (P, 2)
Dl:x1 (H)-X1 (L)
L1:Sqr (DL^2)
c=DL/LI
NAA(P'1):oS(P'1)*C
NAA(P'2)=D5 (P'2)*C
Nêxt P

Fiq. 6b
The on the joints acting primary forces D7(P,1)
and D7(P,2) are assumed to the right; then on
the member ends to the left directed.
The final member end forces
D5(P.1) at meÍiber end L and
D5(P,2) at member end H, are assume to be
directed to the right. Then follow
D5 (V,t):FK (P,1) -D7 (P, 1) and
D5 (P, 2) :FK (P' 2) -D7 (P,2) .

The final member end forces w.r,t. member axis
x, NAA(P,1) and NAA(P,2) are directed according
to the member axis, :i 'l r . i ,.
with D1:X1 (H) -x1 (L) , L1:SQR (o7^zl and C=D1,/L1
then foffow
NAA(P' 1):D5 (P, L) *C and NAA(P,2):D5(P,2)"C.
And then the foloowing member with
Nêxt P.

laztr) z ,, %1À
-

+j1

/VAA(n/)
-----È>

as(?4
NAA(n2)

-
2*42J

E
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'6. Cafcul-ation of the joint for-
'ces KH (I) ,

'6a. Due to the di-splacements
I a]one.

ryz\ 2 ÈZ/X

6. Cal-cufation of the joint forces KH(f).
6a. Due to the displacements alone.

Fig. 7a.
The on the joint acting rjoint forcer KH(ï),
assumed to be directed to the left is egual
one! force on the joint to the }eft acting inem-
ber end force, or is equal
the sum of the on the joínt to the left acting
member end forces, (see page )

To cal-culate the joint forces the original, not
altered construct.ion matrix CC is used.
Therefore first the subroutine
CONSTRMATCCAXMEMBER

For ï:L To N9
Joint force KH(I) is equal a row A:l-*f of ma-
trix CC times column UU.
rf I=3 Then A:1*3:3, before KH(3):0.
J=1 KH (3) = 0 +cC (3, 1) *UU (1)

-tr!Q)
-+-Lh"2-tx ^ FzlK

2F2íl s F32X

rig. q

1

2
3
4
5

uu (1)
uu(2)

KH (3) . cc (A, J)

CC

CONSTRMATCCAXMEMBER
For I:1 To N9

KH(r):0
For J:1 To N

KH (I) :KH (ï) +CC (A, J) *UU (J)
Next .t

UU

J=2
J:3
J:4
J:5

KH
KH
KH
KH

3 ) =Kn ( 3 ) +CC (3 ,2' *U0 (2)
3):Kn (3) +CC (3, 3) *UU (3)
3) :KH (3) +CC (3, 4) *UU (4 )

3) :KH (3) +cc (3, 5) *UU (5)

t

'6b. Due to the displacements and
'member loads alongi the member
t axis,
For P:l To P9 : L:LL(P) : H:HH(P)
If I:L Then
KH (r):KH (ï) -D7 (P,1)
EfseIf I:H Then
KH(r):KH (ï)-D7 (P,2)
End If
Next P

Next ï

6b. Due to the displacements and member loads
along the rnember axis.
Fig. 7b.
The member loads deliver the primary forces
D7(P,1) at L and D7(P,2) at H.
For a joint I all (not necessary here, but see
trusses pagê , ) the P:1 To P9 members are
checked to see if a member delivers a primary
force on that joint. That's the case if joint
number I eguals member end number L or member
end number H.
The on the joints acting primary forces are as
the joint .load forces assumed to be directed to
the right.
If I=L then becomes
KH(l):KH(I) -D7 (P, 1) and
if I:H then becomes
KH (r) :611 (I) -D7 (P, 2) .

After t.he l-ast member foll-ows the next joÍnt,
Next L

7. Calculation of the reactions.
Fig. I .

The reactions RH(ï) are as assumed for thejoint load forces FX(I) directed to the right.
fs the joJ-nt elastic supported then the spri-ng
constant is SH(I)>0. Is the displacement UH(I)
assumed to the right, the spring reaction beco-
mes
VKH:SH(I)*UH(I) to the left, so that

RH (r):-5s (I) *UH (r)

In all other cases is

RH(r):KH{r)-Fx(r) .

Finally the end of the main calculation with

kaQ) 2a<zJ
I- .+r

a7(e2)
.rg z'6

Fl/q2

--+_ J<-_
?nft1 t k///,f)

F,;z',9.

oVred

t'^ 
^^ 

4.. u//(0)

V(H

'7. Calculation of the reactions
For I:1 To N9
If SH(r)>0 Then
RH(r):-SH(r) *UH(r)
EIse
RH (r ) :611 (I ) -FX (I )

End ïf
Next f

End Sub

End Sub

2s



Pr/

Fx<.t)

r-t
I" x,(-z)

Program ÀXPROCRA!42J2 assumptions .

Continuous members. Torsion not included.

Fig. 1 .

Joint assumpti-ons.t
rèt
tJ,

È)9.t.

The 'member axis systemt [-Ï i-s always
ry

placed at the Lowest member end number

qqP,y a7/(Êl
frtt(il)

,y

{-rlrtt)
t/

laage tí
Eíq.2.

The assumed direction of the load for-
ces like the x-axis (just a name)of the
member axis system.
Reactions Nl- and N2.assumed in opposite
directlon.

B

-2I TFXPHUHSHXl

I joint number
EX(I) horizontal joint load forice

PH(I)=0
joint displ-acement UH (I)
PH(I)=1
joint dispfacement UH(ï)
uH(I):0 or <>0

not prescribed

is prescribed

/

uH(I) in EA (EA is straj-n stiffness)
a horizontal displacement
SH(I) horizontal spring constant in EA

X1(I) distance from left end in m

RH(I) reaction to the right
Mernber assurnptions,

P LL HH A1 NFA NOÀ

TFXPHUHSHXl

P member nrgnber
LL (F) .lowest member end number
HH(P) highest member end number

NFA(P) number of horizontal member load forces.

NQA(P) number of horizontal distributed member
Ioad forces.

,f,

2 B4^t 3

Jn

FÍ9.3 .

With member loads, no joint loads.

N9:3 joints

lcV 2 tFA
Jm

E

Fig. 4

Member axis system
end number.

N9=3 joints

l7"a lowest!! member

ÏFXPHUHSHXl
L

0
t_

0
0

0

1
2

3

10
5

0

2

Q'|
5

1

Q6
0

3

Q7
0

2

Q6

0
0
0

0
0

0

0

0
0

o
0

0

1

0
1

o
0
0

1

2

3

0
5

10

F9=2 nernbers F9:2 menrbers.

P LL HH A1 NFA NOA P LI, HH A1 NFA NOA

1

I
1

2
I
7

1
L6

2

0
ï,'l

aJ

1

I
1

z
r
1

1 11

Ir6
0

1_

0
Í"7

a

11 2
F5
-B

3

3

11

F5
B

2
L5

2

0 0

2ó



-:-.* 3

2

1

MIAX*
$lÀJ(=

N5!lA)O(=

[ÀÀ{1,2}= -2,
ldAA{2,3}= 5

IIE(ll =
Rg{2)=
Rtr{3}=

J:

![AÀ{2' l}= 2,
l{ÀÀ{3,2} = 3,

ItE (ll = 0

Ug{2}= 4
ItE{31= -0

Dolaal force diagnau El(5

1

AXPROGRAM222 the form contro.ls.

Number of joints N9:, text box TN9.

Number of membêrs p!:, text box TP9.

TSTRfNG is the large text box for ínput of
joint and nenber data. After input of those
data press Enter or click OK.
Click Show after all data put in to appear on
the form, pagê 34f and disappear when clicking
CaIcuIate to caruy out the calculations.
Cl-ick C1s to clear the form.

Next click DRAIdNS to print the normal force
diagram, compression below the zero ]ine and
tension above the zero 1ine.
NMAX for each member P.
NSMAXX is the iargiest of all NMAX..

Fig.4a.
Assumed direction of meÍibêr end forces
from lowest member end number L
to hlghest mefibêr end nuÍnber Il.

NAA(P,1) and NAA(P,2), page 24,
printed as NAA(Il,L) and NAA(H,L) .

{NÀA{P, 1) determines r-compressiont' or ''tensionr
according to made assuïIption. )

39

-er32 ld X= 0rO0 u F= I
5,68 kll l(= 0,00 u P= 2
5,68 kl{ X= 0,00 u F 2

32 lrd
32 lc$

,32 ld{
, 68 lcl{

00
64
55

-arsu lfll
0,00 ll[
3,33 N

CSE=0 Resutb Reactions Shorn Again

ng= l-- -gLJre= f G{:l- HE H7 srep E I AË 0ver

PrF OffAhrMs l-cerruê I
d STORE NR=?

ÍÊ;È

/Fn
/E

GET

E4-l

Cls

SEXAMPLES EXl Ë(2 E)€ EX4 EX5 EXO

, 2, 3.
t,/ ,t 2

--

lsl-l
,e r;'

eaatt

f1g

2,32

_Wr/
2,32 Jil2

Èig +Á.

, Type in TG 1.8 and ci-ick N5N7 Step G,
I results here below. See page 30.

*a4/ 2
{.

I óa 9 Á.1/
--.-1

3,ft

iletEber 1
X= 0100 u
ï= 1180 a
X= 2100 r
senber 2
X= 0100 a
X- 1,80 a
l= i,00 a
X= 31 60 rn

X- 5100 a

U5= -2r 32 fCf
S5= -2r3C tfl
lilS= -2,31 tl$

[5= 5,
N5: 5,
l{5= 5,
N5= -3,
H5* -3,

f7- -2r 32 ldÍ
U?= -2,32 ld[
li[?= -2,3? 1l[

la.
Thus is assumed that NAA(P'1) pushes at member
end L, and NÀA(Pr2) puJ-ls at member end H.

68 kU
68 ktr
32H
32 lEN

32 ltr

6S tÍ
6E HS

6È XtI
32 IflI
33S

l{?= 5,
lI?: 5'
S?= -3,
!I?= -3,
llÍ?= -3,

Member P:1.
NAA(1,2): -2,32 kN, negative
real direction of member end
not to the right as assumed,
NAA(2,1)= 2,32 kN, positi\re
real direction of member end
to the right as assumed.

answer, so the
force NAA(L,H) is
but to the left.
ans.wer, so the
force NAA(H,L) is

Again Al-1 UH ( I ) set zero.

All Over Again To start position

STORE NR: GET

Storing data put in, page 28.

CSE=0 cLick to CSE:II to put in sepa-
rate input values, page 31.

BfF to prj.nt the $creen form.

Member P:2.
NAA(2,3): 5rB6 kN, positíve answer' directed
as assumedr NAA(3.2): 3132 kN, positive answer
so directed as assumed.

Reactions assumed direction to the right.
RH(1): -2,32 kN, real direction to the left.
RH(2):0, no reaction.
HR(3): 3,3.2 kN, real directiort t.o the right.

,Joint displacements, assumed to the right.
UH (1): 0 /EA
Ug(z): 4t64/ EA, ttratrs to the right.
,loinL 3 is horizontally supported by a spring'
sH(3): 6,0 EA' page 34.
uH(3):- -0.55 ,/EA. that's to the left

3

2óA



nor4al foree diagran
Example

/
J /2EA

3,5n 25
Fig. 5 .

' 
the member axis system

'end number.
The assumed direction of the member foads is
that of x of the member axis system.

trnput. of joint, mernber and member J-oad data,
i see them on the left.

N9=2 supports/ioints
Type 2 j-n text box TN9, Tab, cursor in TSTRING
and type

0 0 0

V ", the lowest member

2

lrê
Ij

I
I
t

1

NIIN(:
NSllAlOl=

ItE {1} =
R.H {?) =

-9,46 lN
-Ê,46 lËIl

a

-!5J cb
All0verAqain I

GEÏ

l3sj

X= 3,51 u P= 1

X= 3151 n P= I

l{Ai[{I, ?} = 2, 50 kl l{AÀ{2, I} = -1, 50 lril

/EA
/EA

0r 00
0r 00

XI
0

CI0

KN

kll
2.50

-1,50
ug(1)=
uH{2}=

L7
2,SQ

6

5H
0
0

NQA

1

UH

0

0

!ITA
I

t6
503

PH

1

1

A1
2rO
L5

r50
Q?

4r0

s[
0

o

F],H
1121
ïF5
I -11,0 3
TQ6
I 4rO

1

1

t-

1

1

2

4

0 1 00 Enter and 2 0 6 Enter
cursor appears in text box TP9

P9=1 member
Type 1 in text box TP9, Tab, cursor in TSTRING
and type

L 1,2 1 Enter1

N5 N7 Step 6 |

PrF DHAWNS .c{qdetq I sroRE NR= ?

SEXAMPLES EXl EX2 EX3 EX4 EXs EX6

,/./

/2€A
-f 5at

fol-lowed by the load force 11 kN with
-11 3.5 Enter

and the distributed load with
4 2E 2.5 Enter

2,0,7, O, 0,0 Enter

Click Show to see the data put in.
Click Calculate to carry out the calculalion,
first data shown disaPpears,
DRAV{N5 to draw the normal force diagram, a.lso
appear maximum values,
Results for the member end forces NAA(L'H)'and
NAA (H, L) , and
Reactions for support reactions RH(1) and RH(2)
and joint displacements UH(1) and UH(2).

Fig.6.

Member axis system at the otlqr member end,
must have the lowest member end ntimber, so l- at

. the right end and 2 at the left end.

N9:2 supporte/joints
Type 2 in text box TN9, Tab, cursor in TSTRING
and type
l-,0,1,0,0,6 Enter and
cursor appears in text box TP9

P9=1 member.
Type 1 in text box TP9, Tab, cursor in TSTRING
and type

Results Reactions Show

Ne= fí
P9= fït- 6=f-

hs.ó.

nornal fcrce diagrara

rt

I{ilN(= -8,
NSllAlOt= -A,

l{AA{1,3}= 1,50 kl{ l{AA{?, 1}= -2,50 lfll

I2 1 Enter
foffowed by the load force 11 kN with
1",tL,2.5 Enter
and the distributed load with
I,-ê,-4,O,2.5 Enter. Btc.

To compare with he data input here above.
The normal- force diagram j-s mirrorred.
Now above the member compression and below the
member líne tension.

1

1 t- t 1

50 kl{ X= 2,50 n
50 IiN X= 2150 n

00
00

P=
F

0,
0,

I
I

RE{1r=
RA{e}=

-1,50 l$l
2,50 kl{

uff{r}=
uH (21=

/EA
IEA

27



nornal force diagrarn

Example

P=./ FÁ 2 t244t 2,s4

N9=3 oints. Supports 1 and 3.
Type 3 in text box TN9, Tab, cursor in TSTRING
and type

1 0

1

MINi= 2
NllN(= -S

NSl$lOt= -Ë

B,fo

ilAÀ{2, l} =
NAÀ(3,2) =

uË (11 =
uE{2}=
ïIE (31 =

3

1ío

-2,50 I:[
-1,50 ld{

0,00 /EA
-0,'t3 lEA
0,00 /EA

2
,'

2

50

Fig. 7

'50
r50

lÍ{ )l- 0,00 n P: I
kll ll= 0,00 m F 2
klÍ X= 0,00 n F 2

1 0 3.5 Enter
3 0 Enter
cursor: appears in texÈ box TP9.

P9=2 members.
Type 2 in text box TP9, Tab, cursor in TSTRING
and type

0

0

0

0

0 00 Enter 2 -11
t{4,1, (1, 2} =
HAÀ{2' 3f =

RE(1)=
Rfl(2)*
nE {31 =

2,50 kl{
-€,50 kl{

50 kt{
00 kN
50 H{

AI
12,0

A1
l2r 0

Q?
4r0

1

2,
0,

-t
3 72 0 Enter,

and the distributed foad with
4 0 2.5 Enter

Cl-ick Show to check the input

Storing the data,
Clíck NR= to e.g. NR:2 if not underlined and
cfick STORE gets STORE and NR:2 as well-.
Numbering NR: up with left mouse button and
numbering down with right mouse button, maxi-
rnum R=1O.
Wanting the stored data back, click to the un-
derlined NR:2, c]Íck cET gets underfined and
Show. Remove the data, clíck with right mouse
button on GET, underlinig disappearsr of NR:2
as wel-l-.

Click Calculate, DRAÍ/íN5 Resul-ts and Reactions
to get the print shown on the left,

/2
NAA(I,z) @tt,4

// g.t+í
Hooke's 1aw uH (I): ft*L/ tEAt

Here with 'EA' is 12EA

At 2, , 2,Solt
) 3.1a, 12€A

Fig. 1-0

UH(2): (2t50*3,50) /l2EA: 0,'73/EA to the
treft, that is opposite to the assumed
direction, so UH (2)=-0,'13/EI .

3

I'
/2€A v

Fig. 11.

See formul-a page 45, z: e*L^2/28A.

(4*2,50^2) / (2*1,28A): 1,04/EA and

(8,50*2,5Q) /72F,A= 1,,77 /EA,

Assumed to the right,
UH(2): L,A4/EA - L,17/Ee= -0,'13/EA ok

1",7,2.1_2. O ,0 Enter and 2 2 1

ï
1
2
3

PH UH

10
0 -0r?
10

r:t
0

,0
0

11

PTH
223
1Q6
L 4,0

x1
0

50
00

3

6

5Ë
0

0

0

NOA

0

2 4

$FÀ
0

PLH
112

NFA I{AA
01

T,6 L7
0 2,50

2 3
nlf,s,4/vAA(2.,

Fiq. B .

Member end forces NAA(L,H) and NAA(H,t) have
assumed directions from lowest to highest mem-
ber end number.

2.so ,/ 2 2tio
,l /2€A

'tz t

-&,íà2 3
9:T '2EA

Fi.q. 9

The member end forces drawn with their real di-
rections,
At joint 2 act the member end forces as large
as but opposite d.irected.
Dlomboro and jointo in oquilibrium,

//.p: I
1í{- *

2e



Example.

nonnàl force diagrara
2t,ool.y'

/.6a I

NltlX= -21,00 IÍ{
N5l{AlO(= -21,00 kN

ItF{l}= -21,00 }Sf
RE {2} = 0' 00 kl{

Ilff(ll= -10,50 kt{
RE{?)= 0,00 lclil

RF111= -16'
BEla;= 0l

soLt

X- 0,00 n F= 1
X=0100r h1

ufl(11=
uË {2} =

7

z , .Z : Q*L^2/2EAI z
3ro

16m

Fig. 12a.

N9:2 oints P9:l- member
NOA

l-01000112101
200003IQ6Q"7L6L'1

77't03
Type 2 in TN9, Tab, tlpe in TSTRING

rFX

J-

PHUHSHXlPLHAlNFANAjA{l' 2l = -21,00 }$f NÀÀ(?' 1} = 0 IdS

IEA,
ÍEA'

00
50

0,
31,

x1
0

00

1 10

1

0

1

0 0

0

0 0 00 Enter and 2 3 Enter.
I
1

2

F
1

I
I

SE

0

0

ttH
0

531

PË

1

0

F:T

0

0

Type 1 in TP9, Tab and tYPe in TSTRING
1 2 0 1 Enter
and next in TSTRING 13

't 't 3 Enter.

7,Q 7,Q

}IFA NCA

CI1
L6 L7
0 3,00

noËmal foree diagraE
t4ío /t/

1
2,29 /.{ ,'

l$lAlí= -10,50 l*{ X- 0,00 u F
NSf$lO(= -10,50 LU X= 0n00 n F

IIAÀ{1,21= -10,50 klr uAÀ{?,11= 0kil

Click Cal-cul-ate, DRAWNs, Resufts, ReacLÍons and
Show to get the resul-ts shown on the left.
Normaf force at 1. 6 m from the 1eft.
Click in TG to get the cursor there and type
L.6 Enter and click N5 N7 Step G.

uenber I

T,H AI
r 2 1,0

86 Q7

Tn TG L.6 Enter

I IN t{?= -21 kDr

0 kN N?= -9180 ïÍ{
0 kll l{?: 0 }S{

N7=-10' 50 kl{
N?= -2,29 kN

l{?= 0,00 }$I

J(=

X: 1,
X= 3r

lrl5= '2

N5=
I-9il5:

0n
60u
00 an

1

&r/a

2 Z : Q*L^2/6EA

Fiq.12b.

Joint data and member data the same.
The member load data t,7,0,4,3 EnLer.

and click N5 N7 SteP G.

DÊnber L

1

1

uE(11=
uH (2) =

0,00 /EA
10,50 /E[

)(=
l(=
[=

0r00 n
1,60 n
3,00 n

N5=-10' 50 lli
lil5= -2r ?9 kt{
H5= 0,00 kl{

+

noEDal force diaqran
/qpw

1 ?

1

!$tAlt: -10.50 kl{ X=
NSllAlO(= -10'50 k[I fi=

NeÀ(1,2)= -10,50 kN l{ÀA{2' L} = CI IcU

2 Z = Q*L^2/3EA

Fiq.1"2c.

Joint data and member data the same.
The menrber load data L,'1 ,0,4,3 Ente!'
ïn TG L6 Enter

EeDber 1

X= 0100 m

X= 1160 n
ï- 3100 n

/t/

g,
0,

00n F=l
00n P=l

S5=-10,
N5= -?,
H5= 0,

N?=-l0r 50 kII
N?- -7,51 ldtl

lÍ7: 0,00 líll

50 klt
5r Lt
00 kF

50 klr
00 lÈl

uË{1}:
uH {2}=

0,00 IEA
21,00 /gA,

a) is b) t c), for N5 -9, B0= -2 2 9 + (-7,51)
That's correct' the figures donrt show that.
Each tlme a diagram is drawn the larges normal
force determines how Lhe diagram looks like.
Here the largest normal- force in the diagram is
a).rouL 0,?5 eln.

2g



nornàl force diagram

I

lilS= -9r 14 IN
N5= -9,14 f][
N5= -9, f4 kll

/, /4 l^/

/o,86
X-5101n FI
X=5r0Im F1

IIH {1} = 0,
IIR {Z) = 0,

2

0,00 IEA
0,00 /EA

Exampl-e.

Eig.13

N9=2 oints.

P=l IEA
aD

P9=1 member

Á
/+

2m e
1

NllA.ll= 10, S6 kÈl

l{S}lAlQ(= 10, E6 k}l

RË{l}= -9,14 }f
Rg{?l= -10, g6 bl{

112
IF5L5
182
21"25

L20
Ï FX PH UH SH X1 P ], H A1 NFA NQA
101000
20100'7

l{ÀiÈ{1,2}= -9,14 ldt !IAA{2' 1l= -10,86 ld{

00
00

EA
EA ïn TN9 type 2, Tab, in TSTRING

0 0 Enter, and 2 l- ? Enter1 0 1 0

2

0 0 0

nÊnb€r 1

X= 0100 n
X= 1150 n
X= 2,00 ra

N?= -9114 kI{
N?= -9, 14 ld{
N7= -1.14 nf

N5= -1r 14
N5= -1,1{
N5= -1, 14
l{5= 10, 86
N5= 10,86

KH

klr
I$I
xtÍ
klr

S7=
N7-
tI?=
N7=
l{?=

-1,l4 kltl

-1,14 lrll
10, Ê6 kll
10,8€ 1r!I

10, Ë6 lóI

x1
0

l roa

A1
lr0
t5

zroo
5,00

norlnal force diagras
/e,&6

1

1,ry

ry
MlAlt= -l0r

NSllAlOl= -I0r

NAA(I'2)= 9,14 lÍI l1|ÀA{2'1}- 10'86 ltg

in TP9 type 1, Tab, and in TSTRING

0 Enter, the member foads with
1 2 Enter and 2 L2 5 Enter.

Click CaIculate, DRAÏ/ÍNs, Results and Reactions

lA.*//,2) o /2 'V5,4/Zl

0 2 /2.oé

Fig.14

The member with assumed direction of the mêmber
end forces NAA(1,2) and NAA(2,1).
NAA(1,2): -9,14 kN' negative answer so not to
the left as assumed but directed to the right.
NAA(2,1): -10,86 kN, that's to the left.

' -jé-N5 N7

A
/,ry

Fig. 15

Joint 2 with a member load force, not a joint
load force, separated with the assumed directi-
ons of N5 and N7.
N5= -9,14 kN, a negati-ve answer so not directed
as assumed but opposite dj-rected that's to the
left. Acting at member end A as large as but
opposite directed, that's to the right. Member
part 1-A in equilibrium.
Joint 2 is A, N7: -1114 kN, not directed to the
teft as assumed but to the right. The joint is
in equilibrium.

Suppose the member load forces to the left
Type 1 in TP9. next 1 2 0 Enter and

_o 2 EnLer and 2 -12 5 Enter.
Ca-trculate, DRAWNS ete. on the feft.

NI.{AX is the largest normal force of member 1,
N5MAXX is the largest normal force of all mem-
bers, here only one member. See next page with
ttrïeê membe::s,

1 1 12

3r20 n
4180 m

5,00 n
6140 n
?r00 m

$=
f,=
[=
x-
[=

utt
0

0

IIFA
,

PN

1

I

rní
10
20

PtH
112
r r'5
1 gr0
2 r2,0

/2
5E

0
o

NQA

0

A8è
- 

+*-
9'/* g,tt 7ty

ld[ X= 5,01 u P- l
EN X= 5r0I n P= 1

86
8€

RË {1} =
RH{?}=

I, 14 kll
10,86 kll

A1
1' 0
L5

a,00
5,00

uË(11=
UII (21=

I
I
2

P

I
I
I
2

5H
E

0

NQA
0

u8
0
0

I{E'A
5

HI
1

1

E?I

0

0

IH
L2

F5

x1
0

? r0o 1 ) 1

1

-Êr 0
-12r 0

uz

+-+

30



norrnal force di

I
4

P=1
F?
P=3
P=3

o,oo /EA
L8,29 lla
2r,7L tE;L
0,oo lÊa

Example.

Fig.16.

N9:4 ioints

3b,/
2

J

2
€4

/2 /U t

2at 2I 3

2

P9=3 members
TFXPHUHSHXI PLHAlNFA NOA

MIA]i=
trll{AX=
NllAll=

NStlAlfi-

-9,14 lÍ{
-1,14 H{
10, s6 kll
10,86 kll

00m

ItH {1} =
uH{2}=
ItH {3} =
ufl {4} =

10
2B
J LZ

40

X= 0,
X= 0,
X= 0,
X- 0,

g,
o,
0,
o,

00
00
00

m

IB

trl

0

2

5
7

0
0

0
0

0

0
0
0

1

0

0
l-

112r00
223100
334100

NÀA{1,2}= -9'14 kll l{AÀ(2'1}=
l{AA{2,3)= -1,14 ]d{ NÀÀ(3,2}=
HAA{3,41= 10' 86 kL{ NAA{4' 3} = -1

Type 4 in TN9, next joint data in TSTRING,
type 3 in TP9, next member data in TSTRING

Click Calculate DRAWNs, Results and Reactíons.

Type 1.6 in TG for G:1.6 m, click N5N7 Step G

2
/4

/43é

9,14
1,14
0,86

!óI
td{
klr

RS{l)= -9'14 lc}l

RE{z}= 0'00 lc}l

FË{3}= 0'00 ld{
I{Ê{4}= -10' Ê6 kl{

/2

9' t+

reEbÊr I
ï= 0,00 :n
X= fr60 m

l{: ?'00 u
rBe[ber 2
X= 0100 n
X= 1160 n
X= 3100 m

neEber 3

X= 0r 00 rn

?-!t- 2 
",_/tN5= -9' f4 HÍ

N5= -9, 14 ld{
N5: -9,14 klf

H5= -1,14 kl,l
N5= -1,14 kt{
lil5= -1,14 klf

N5= 10,96 kN
l{5= l0r 86 kl{
N5= 10r Ê6 tl{

l{?: -9r 14 kI[
lil]= -9r 14 kl,I

N7: -9,14 ldl

N7: -1,14 xl{
N7= -1,14 ld[
N?= -1114 kil

li[?= 10rË6 lttÍ
N?= 10,86 kt{
lil?= 10, Ê6 L'f,f

9,/*
J,./,

o2-*
,l /t

2. /'/t

_/2
JlJ&+È/,/, /q8ó,1r60 m

2,00 u
[=
]{=

Fig. 17 ./O,Bé

Members and joints are separated from each
other. The member end forces are drawn wlth
their real directions. on the joints act forces
as l-arge as but opposite directed, Members and
joints are in equilibrium-

,/r"C--è----- ---=*
?'/q 

- -4/í 
JVS Nl

c
#lg,/2

/O.Bé

nornal foree diagrau

1

I

NHN(= -20'00 IN 1(=

li[l$)í= -12,00 tN [=
Nl{A}i= 0' 00 kll }=

N5llAIOl= -?0,00 kl{ l(=

1ó*t-l-----+
9/t

rig. l"B .

Member l-, drawn a part with length 1'6 m'

And member end C seen as a 'joint' without
joint load force. with assumed N5 and N7' Next
NS ana N7 are drawn with their real directíon'
At C act a force as large as but opposit
directed. Equilibrium.
ïn such case N7 can be omitted and not printed
because 'joint' Ioad force does not exist' See

the preceding Page'

+ +

4

3a

00n P:1
00n Fa
00tr P=3
00n Fl

t{AlA{l,21= -20' 00 }l[
IIAA{2, 3l= -I2,00 kl{
l{ÀA(3'4)= 0 kl{

RE(1) = -20' 00 kll
ÍtE {2 ) = 0, 00 kl{
RË(31: 0'00 kll
BH (4) = 0,00 kl{

NÀÀ{2' 1} =
NAÀ(3' 2f =
l{AA {4' 3} =

tlE (1) =
uE(21-
uH{31=
Ufl (4) -

20,
t,t

0,00 ./EA
40,08 íEIt
76,0Q lEA
?6,00 /EA

00 1$l

00 rdil

0 l$t

Suppose joint 4 can move freely horizontally,
displacement not prescribed, so PH(4):0'
Cfick CSE:0 to CSE:1, and type in TSTRING

PH(4):0 Enter. Etc. See the resillts shown on

<-. _2
a

3-'*2

the left

3/



+-*2 3

z

1

NllAlt-
NltA](=

NSlel0t=

HAÀ{l' 2}=
l{AÀ{2, 3} =

-3r 83
-4rÊ3
-4tA3

4

3,83 ldl
4,83 ldll

o, o0 /EA
7,67 lEA
0,00 /EA

GEÏ

lI*J

+, ?

4,83 I{U
3, Ê3 kII

nonDal force diagram Etil

1

Exampfe EX1

ó

2 ou
2.rà

P=2
3

Fig.19.

, .loints and meÍrtcers are regularly numbered from
left Èo right, 1-2-3 and 1-2.
N9=3 oints. P9=2 members

NQA
LL2L00
2231.01.
r Q6 Q-7 L6 Ll
10-6 13

Type 3 in TN9, next joint data in TSTRING,

PJ

-3,83 kl{
4,17 kl{

NAA(211f =
l{ÀI(3' 2) =

un(11=
uE(?l=
uH {3) =

+,/,
klf X= 0100 m F= I
kN X=4,01m Fe
kI{ X=4,01n ha

s3 kt{
00 kt{
€3 kN

ÍFXPHUHSHXl
101000
280002
301006

PLHAlNTA

IIH (11= -3
RÊ {21= 0
tlE{3}= {

CSE=O Results Reactions Show Again

Ne= l-- -!5"JPe= f* G=f- 
NF tll s_tep F I AllOver

*tt [Wl FeFvle!" i sroRE NR= ?

EXAMPLESSI EXl EX2 EX3 EX4 EXs EX6

0 2 Enter and
1 0 6 Enter

I Type 2 in P9, next membrer data in TSTRING,
Cls

3

1

1

z 0

0

0

1

0

1 0
0

1

0 0

3

0

0

0 Enter 2

Entêr 1 1 Enter and
T
0 2

-6 3 Enter. C1ick Cafcufate etc.1

nornal force diagran EE2

uH(2):1,67/EA

Exampfe EX2
t:

0lr/
2

-++X)

Fiq. 20

Joints and members are irregularly numbered
from left to right, 2-7-3 and 2-1.
N9=3 ioints. P9=2 members.

2 31 FA

Srat
NltÀX: -41
NIIAI(= -3,

NSl{NOt= -4,

NAA {1' 3} = 4' 1? kl{
t{AA(1'2}= -3,83 k$

X=4101u F1
X=0100m Fz
X=4101n F1

s3 lt{
Ë3 kN
83 kt{

T FX PH UH SH X1 P L H A1 NFA NQA

RH{l)=
RtI {2} =
IlË {3} =

0,00 l(N

-3,83 kN
4, Ë3 kl{

l{AA.(3' I | =
t{ÀÀ(2' 1} =

IIE(1)=
IIH (21=
IIE (31=

7,67 lFA
0,Ê0 /EA
0,00 ,/EA

18000211-3101
201000IQ6Q7L6L1
3 0 1 0 0 6 1 0 -6 t- 3

21_2100
The member axis system of member 2 ís placed at
the lo.west member end number according to thê
assumption! UH(1)= 7,67 /EA

Example EX3.

g
3a 2

noEnal force diaqran

4,&J

En3

J- 03

1

MlÀX=
!BlA)l=

HSHAlOt=

t{BA{1,2}=
EAA {2, 3l:

RHtl)=
RE{2)=
RE{3)=

4
.'

B

-4
-?

-4

-4,
-ê

S3 l$t X= 0,00 n P= 1

83kl{ X=0100m P=2
S3 ld{ X=0100m È1

83 KI{
83 KH

-4,83 kN
0,00 kl{
3,83 kl{

tíq.21.

N9=3 joints. P9:2 members.

€4

tJH (2): -1 , 6'l /EA

l{aÀ (2, 1) =
t{ÀÀ (3, ?):

-4,17 lcll
3, B3 ld[

0,00 /EÈ
-7,57 ÍFA
0,00 /E[

Ï FX PH UTl SH X1 P L }1 A1 NFA NQA
2L0t-1

2
3

0

-ó
0

0
0
(J

0
0

0

1

0
1

0
4

6

1

I
1

2

L6
0

t_

Q6
6

2

Q'7 L7
Ira {11:
ÏtH (21-
ttH {3} =

0 3
31,00

2 +..- I

32



nornal force diagran EK4

I

-3,43 kl{
2,57 kll

-3,43 XII

Example EX4

3,43 lcll

-2, 5? td{ N9=3 joints.

3

2
/ /,5 4.J€A
I c

Eig.22

Joint 1 and 3 are horizontal hinges with hinge
constant 7 EA, the horizontal displacements of
joint/suplort 1 and 3 are not prescribed so

PH(1):0 and PH(3)=0.
Member 1 and 2 with different strain stiffness
All(l-): 1.5 EA and All(2): 1'1 EA'

P9:2 rnembers.

b*4

1

NHAI(-
$lllN(=

$5llEl0l=

l{AA{l' 2} =
t{ÀA{2,3}=

Rg {l} =
t{ff {2} -
RH {3) =

-3,43 lcDI

2,5? kl{
NAÀ{2, 1} =
NAÀ(3' 2) =

uR (11:
ug{2}=
IIH {3} =

3

X= 0,00 m P= 1

ï=0100m È?
X=0100m È1

C

2

4

0

0

0

0

TFXPHUHSH PLHAl NFA NOA

0r4
6r2
0r3

xl
0

50
00

The calculation horlzontal diaplacements are
uH(1-):0,49 VH(2):6,21 UH(3):0'37 /EA'
positive answers so as assumed to the rignt'

9/
L!
1/

EA
EA
EÀ

1000
2600
3000

0 0
0

1.5
L.1

Ll-2
223

n

0-3,43 líll
0,00 ldl

-2r5? rN

o 2.5
7 5.0

T

1
2
3

PH

0

0

0

E:T

0

,0
U

6

ut 5fl
't,0

0

7r0

0

6

0

2
5

PLIT A1
112r,s

1
PtH
22 3 1

IÏFA SQA

À1 NFA NQA

noErlal foree diaqram

1

Fig. 23.

Member 1 becomes longer by the member end force
of 3,43 kN. v{ith ar,: F*L/'EA" follows

AL: (3,43*2t50) /1,5EA= 5,72/EA longer'
The figure shows
At: uH(2) -UH(r) : 6,ZL|F,A -5,72/EA: o' 49 IE'A ok

z.*z _____-g:tgt.t ÈA

' 
ó'?' i -4$

Eiq.24 .

Menlcer 2 becomes shorter by the member end for-
ce of 2,57 kN.

LL: Q,57*2,50) /I,1EA: 5r 84/EA shorter'
The figure shows

^r: 
uH(2)-UH(3): 6,27/Ee -a,37/F,e: 5'84lEA ok

1

MIA)i:
NlliU(=

NSllN0t=

-3,44 kl{
2,56 kt{

-3,44 kl{

X= 0,00 m P= I
X= 0100 n P= 2
X= 0100 m P= I

víhen going on aftêr the last resu.lts
with prescribed UH(1) and UH(3) and no
horizontal- hinges, as folfolrs-

click CSE:0 to CSE:I- red.
First click Again to make all displace-
ments UH(Í):0 for the next main calcu-
Lation.

Next in to typê in TSTRING
PH (1):1 Enter PH 3 er

no ho::izontal hinges'
SH (1):0 Enter SH =0 Enter

values of prescribed displacements,
uii : .49 r UH( 3):.3? Enter

Click C]s and Show to check the new
data and click Calculate DRDBAWNS etc.

0
.37

Displcements UH(1) and UH(3) are prescribed,
PH(1):1 and PH(3):1, no hinges at member end 1

:and 3, SH(1):0 and SH(3)=0.
Final results are like found above, ofcourse'
(Or with prescribed uH(2)=6.21 and pH(2)=1,
final reeultÊ t=hc .,s.arne-)----,

2
2

rí9.25 .

p9:3 joints. P9:2 members.

=1 En
0
6
0

J
1

2

3

FX PH UH S'H X1 PLH A1 NFA NOA

1
0
1

40

0
0

9 0
oÊ

5

1 1 2 7.5 0

2 2 3 1.1- 0
0
0

3

+'à 2

2+.È

Oindingr the samc rcsuLto aa ahove,

33
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nor&àl force diagram Ëts

32 4^/

1

Example EX5

2 O/4/ /4/ 3

P=t &4 P--z aEA
2 2

Member 1 and 2 with different strain stiffness
All(1):1EA and A1l-(2):2 EA. At joint 3 a
horizontal hinge with constant SH(3): 6 ee.

N9=3 ioints P9:2 members.
PLHAlNFANQA
112100
223200
IF5L5
1 -9 3

í*,+(t,s) A

I

I
I

26

x/

1

NUNi=
!ill{A)l=

NS!&l0t=

NÀÀ{1,21= -2,
l{AA {2 ' 

3) = 5,

X= 0100 n P= t
lí=0,00n h2
ll= 0100 m È 2

l,tAÀ(2,r|=
NÀÀ{3,2}=

2

o,0o /EA
4,64 tEA

-0,55 ./EA

x1
0

2,00
7 ,09

2,32 kll
-5,6S tdl

-0,
4

XI
T rQO
2tAo

CI

1gt
-z

5

5

32 ldl
6Ê lctl
6Ê kll

2,32 lds
3,32 ld{

32 IrlI
68 kll

IFXPHUHSHXl

I{H {1} = -2
RE(z)= 0

I{g {3) = 3

IIE {1} =
IIH {21=
ItE (3) =

32 kH
00 krÍ
3? lÈl

0

B

0

1-

2

3

1
0
0

0

2
'7

A

0

0

6

0

0
0

6,

Fï{
0

,0
0

PLH
r12

ë

ï
I
2
3

P
a

ï
I

PH UH

10
o 416
0 -0r6

al+nzs.t)5n
0

0

0

2 3

NQA

0

NQA

0

NFA
1

IH
,'e

0

3E I'N
00 kt{
3? td{

0

0

0

0

0

0

I

A1
1'0

AI
2rO
15

3, o0

!IFA
0

€,éD

-

p 2,"2--rÉe

32

Eí9.21

Member 2 divided into two parts at A. Two mem-

ber end forces NAA(2,3) and lïAA(3,2) ate known
and drawn with their real directions. Both
parts arê in equilibrium, the forces at A are
drawn with their reaf directions. At the sepa-
rated joint act forces as Larg'e as but opposite
directed. The joint is in equillbrium. ok

Example EX6

XJ
&

P^t jJ=2 2
2 3

rig .28 .

Í,ike fig. 26 but wi-th different joint numbe-
rinq, 3-2-1 in stead of L-2-3.
The member axis system [r? always at lowest
member end number (becofiíng of importance wiyh
trusses) .

Assumed direcLion of joint load forces like X1'
also here B kN, not -B kN, but 9 kN is a member
load force with assumed direction of x-axis of
the member axis sYstem.

N9:3 joints P9:2 members.
FX PH UH SH X1

Hinge force at meÍriber end 1 on the right, is
UH(1)*6EA: (0,55/EA)*6EA: 3,30 kN is 3,32 kN ok

.?l*_
+I-{,68 3.

r5
0-9

norDal fcrce EJIT6diasrarB

t
13

NlrNr=
llMAll=

NSllÀ]Ot=

-2,32 kLf

5,6S kr{
5,68 }ll

-2,32 kDI

-3,32 kl{

2

X= 0,00 n P= I
X=2,01m Fz
X= 2101 m P= 2

l{AA(3' 2} =
NIA{z, 1} =

t

HAA{Z' 3f =
trAA{1,2}=

8E{1t=
R8{2} =
ItE (31 =

uH (11=
uH (21=
OH {3) =

NFA NQA

NE'A I{QA

3,
0,

-2,

55
64
00

t

EA
E[
EA

I
1

3

PH

0

0

I

À1
0

A1
2r0

1,5

'00
2

Et{

0

,0
0

5HUH

6,
ê

-0
4

6
6

0

I PLHAlNFANQA
112100
223200
1F5L5
192

PLH
r23 I ,

0
z
7

0

0
6

0

0
0

1
0
0

0

8
0

1

2
3

H

2
E'5

0

P].
21
I
l9

+. -à
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Examo les with EXAMPLESB to c]ick on for eiqht

different possj-ble nortna.l force diagrarqs 11s4
EXÀMPLESB to EXÀMPLES88.

Click EXAMPLESB to EXAMPLESS1

All examples with N9=4 joints and P9:3 menÈers,
a1l members with A1:1.
Joint numbering in vari-ous ways, member numbe-
ring regular for all eight cases from right to
left with 1,-2-3-4.

B B

4sza

Fig. 2 9

N9=4 joints P9=3 members

m

TFXPHUHSHXl PIHÀ NFA NOA
1

I
1

2
I
1

0

2

3
4

0

0
0

o

0

0
0

0

1,

0
0
1

0
0

0

0

1

2

3
4

341 01
Q6 Q't L6
0-80

L7

2

06
0

3101
Q7 L6 L7
801

1

L7
312
IQ6Q7
108

101
L6

0 2

noxnal foree diaqran

3

3

X= 0,00 m P: t
ll= lr00 m P: 2
X= 0100 m P= 3

Xa fl, ílíl m F- I

After input of joint and member data click
Calculate DRAWNS, Results and Reactions.

On the right of the reactions the horizontaf
displacements UH(ï) are printed, values
uH(1):0 uH(2):7,33 UH(3):4.33 uH(4): O /EA

Before c1J-cking Show click first Again to make
all UH(I) zero, next click Show.

The bottom of the data rdisappeart on the con-
tro1s, click somewhere on the form to make the
control-s invisible, wi-th another cfick they be-
come vislble again.

The member axis syste* f,Ê always placed at the
lowest member end number determines which side
of the meÍiber axis ind-icaLes pressure or ten-
sion. Assum€d is pressure at the side of the
axis system. For this example pressure bel-ow
and tension above the zero fine.

Suppose the distributed load forces of member 3
to be removed, as follows
Double click TP9 if necessary, type 3 in TP9,
Tab, and for P L H A1 NFA NQA in TSTRING

3, !,2, L, 0,0 Enter. Show gives the line below

1

IlllÀll=
llil$(=
lGlÀl(=

r{5rfluOt:

3,00 kl{
3,00 kl{

-1,00 klt
3, 00 klf

PIH
312

A1
1r0

IÍFA ITOA

00
Next Ca cu1ate, DRA!ÍN5 Resu.lts and Reactions,

5,6? ld{ X= 0r 0(r n P= I
5167 lil{ X= 1100 n F U

-6,33 kll X= 0100 m È 3

-6.33 lr}l X= 0100 m F 3

nornal force diagram ETTÈI

I
I
2
a
J

4

1 a 3 4

3

PrF

IX
0

0

0

0

PH

1

0

0

1

ïts
0

0
g

0

5fl
0
0

0
0

Q6
0

Q6
CI

6? ld[
5? kl{
33 l$r

-6',,33 kl{
0.00 hll
o,00 I$l

-1,67 ld{

x1
0

2, OCt

3r00
4,00

PIH
134
IQ5
IO

NtlÀJt=
lill{A)(=
t{HAf'=

NSilAl0l=

NAÀ{3' 4}= 5
l{ÀÀ{2,3} = I
NÀA{1,2; = -6

RH (1) =
ÍLE {2} =
RË{3}:
RH {4) =

NÀÀ(4,3) =
l{AA{3,2} =
IIAA (2, 1) =

ult (1) =
tIE {2) =
uH (31-
UE (4) =

-1,6? Id{

-5,67 lrN

-1,67 lrll

0,00 /EÈ
7,33 lEA
4,33 IFA
0,00 /EA

A1
lro

Q7

-Ê' 0

A1
lro

Q?
8r0

A1
1r0

Q?
8r0

NFA NOA

OI
t6 L7
0 1,00

NFA NQA

01
L6 L7
0 1,00

}ÍFA SOA
01

L6 L7
0 3,00

P

z
I
I

P

3
I
1

ta
23

tfi
L2

-_1

a beautiful t',ortttal- diagrarLr crpucdrs.
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-1
]'

UI]CJ< EXÀMPLESB1 to EXAMPLESB2nortal force diagraa

3

Eng2

2

p 0 o

2to .r rz, ./a>

43,
3 2

2al{AA{1' 4} =
l{aÀ{1,3)=
NAÀ{2,3} =

p€{11=
RE{2)=
IIH (3) =
RIr í41=

5r 6?
-6r33

-1,
-1,
-t

6? lsr
67 kN
67 kN

/EA
íEL
IEA
/EA

0,0o kll
-6,33 kl{

o, o0 kl{
-1,67 kl{

5? lcli
6? lrl{
5? l(}l

5r67

2

kl{ t{AA(4, l} =
rll NAÀ(3, lf =
kll t{ÀÀ{3, 2} =

ItF (1) =
iiII {2) =
rrH {3}:
us(4|:

30iqF

4133
o,00
?' 33
0, o0

N9:4 ioints. P9:3 members.
ÏE"XPHUHSHXlPLHAl NF]\ NOA

3

HAÀ {1, 2} =
t{AÀ{!, 4} =
NAA(3' 4| =

RH {1} =
RE{2)=
Irff{3}:
RE {4}=

1, Ë? kl[
5,6? kll

-6,33 kll

NÀA{2, 1}:
NÀÀ{4' 2} =
NÀA {4, 3} =

ufl (1) =
ïrfl {2}:
gB{3}=
uE (4':

, g

01

01

1000031
201000r
3000021
401004

2
I
t-

151
Q6

0
Q7

-B
L6 L7

0 1

13101
Q6 Q7 L6 L]
-B 0 0 1

nornÈ1 force diagrau Eltê3

, 2

4

23L3
ï
1

Q6 Q7 L6 L]
0802I

Click EXAMPLESS2 to EXAMPLESB3
_Ê

-I,
-7,

I

o

-1,6? kll
0,00 lcg

-6,33 kll
0,00 kN

0,00 /EA
4,33 /ÊA
0,00 /EA
7,33 lEA

1

-5,67 Lll
-5,67 lcll
-1,6? lcll

J

' Fig.31.

Cl-ick EXAMPLESB3 to EXAMPLESB4

vt,,

0

r

nollEal force dj.agram Ex84

4

3

0

t23
1

NAA{2,4}=
N,AA{3' 4}=
I'IAA{1, 3} =

l,6? kl{
1,67 kl,I

-6,33 1$l

HAA{4,2}=
HtrA{4,3) =
l{AÀ{3, 1} =

NAA12,1;=
ilAÀ{3,2}=
l{ÀA{4' 3} =

3

nsrEal force d,iagran Et(Ê5

2

t

Fig.32.

CIiCK EXAMPLESS4 tO EXÀMPLES85

o o

t 2t /t

Fiq. 33 .

The examples show various possibilities of
joint numbering with correspondind drawings of
the normal force diagrams. There are various
possÍbilities of merdcer numbering as wel1.

Three other cases EXAMPLESS6 to EXAMPLESSS left
to compare.

r

Fgttl= -6'
RE{2} = -1,

UHlt;= 0,
ïJH {?}: 0,

1

33 kll
67 kl{

00
00

1EA
/EA

í
J

aí

4

NAA{1,2t =
l{AÀ{2,3l=
t{AA(3, 4} =

-5,6? kl{
-1,6? ld{
6,33 l$l

1,6? klil
5,6? lrl{
l, 6? ull

*.* 3

3ó



I=1
!=2
I=3
F1
P=2

x1
xl
N1
T,I
tt

5
I
2
3

I
,'

=Q

=0
=f
=l
=2

Membe

AXCC111

r stiffness matrices 55 and cons 10n

Exmaple, see page 10. (A1 is EAA(P) )

2 3
/ o,s P-2 3FA

L-;x/ -T-/;a ft1
Fig.1

N9=3
ï

xr- (r )

ilH(1)=2
Hn {21=3

À11 (1| -l
À11 {2' =3

oints P9:2 members

0 .5
3
l-

P12
L12
H23
A1 23

T2
4,OA -4,AO

-4,OO 4,OO

3

When puting in data fine after line appears on
the screen
Type 3 in TN9, Tab and tYpe in TSTRING
1,0, Enter, 2 5 Enter and 3,1. Enter,

cursor in TP9, Tab, and type in TSTRING
1 2 2 Enter and 2,2,3,3 Enter

I
2

J

1

1

',

3

r23

723

cc

_f5

cc

AI1 {I) =2
A1r (31=3

Sí

,32

First click on Show CC prints first stiffness
matrix 55 of member 1 two times
with L:1 and H:2, row and cofumn 1 and 2.

Second click on Show CC, prints second stiff-
ness matrix 55 of meÍUoer 2,
first time with L:2 and H:3, row and column
o --l 2L AttV Jt
second time j-t is added to stiffness matrix CC,
with L:2 and H:3, row and column 2 and 3.

Joint numbering 3-2-1, in stead of 7-2-3

6,00 -6,00

-6,00 6,00

t23
4,OO -4,OA

-4,00 10,00 -6,00

-6,00 6,00

I=1 .XI(1)=1
I=2 lt1 {21 =9, 5
I=3 X1 {31=0
Fl Ltr{lt=2 IÍfi{1}=3
F2 LL{z} =1 llfl {2} =2

I
2

3

- P.t 2È4 P-=2 JFA

Fig.2 .

N9:3 joÍnts P9:2 members
I1

x1(r) 1

23
50

P
L
H

A1

2
t-

2

3

1
2

3
2

1

t

3

L23

4,OO -4 ,OO

-4,00 4,00

4,00 -4,00

-4,00 4,00

12

L 6,00 -6,00

A -6,00 6,00

3

3

r23
I 6, OO -6,00

2 -6,0O 10,O0 -4,00

3 -1t, O0 4 ,OO

I
2

3

ss

EX1 EY\2 EX3 EX4 Again End
STORE NR= ? GET Cls prF

ne=í-F
P9=TT

I @l Strow cC

L2

t 4,00 -11 ,00

Z -4,0O 4,00

a
J

3

s5

e-e ce

s7



f=1
I=2
ï=3
I=4
F=1
P=2
P=3

xl {1) =0
Xl{2} =e
ï1 {3} =4
xI 1E;=5
I,I,{1)-r
Lllzl=2
LL {31 =3

xL {1}:0
Iil 12;=9,
]tI {3) =1,
N.L (4)=1,
Xl {5)=2,
LI 1l; =1
tr,L{2}=2
Í,r, {3) =3
Lr {4} =4

HH {11:2
HH (2; =3
ËH {31=4

ÀIl{r}=r
All (21 =2
À11 {31 =3

Exampfe

N9=4 ioints

EX1 N9:4 P9:3

2J4

P9:3

2
m

6
1234

rs
4

6
1

2

3

4

I
x1(r)

L2
02

3
4

345

P

L
H

A1

2

2

3
2

1-

1
,
1

3

3

4

3Fiq. 3 .
0r50 -0,50

-0,50 0,50

L 2 3. 4

I 0,50 -0,50

2 -0,50 1,oo -0,50

3 -0,5o 1,00 -o,5o

4 -o,50 0,5o

Click EX1, data are printed. Click three times
I to find the resuLts shown on the left.

Examp]e. EX2 N9:5 P9=4

2 í
I a

.5-F--.-rF-

2.

3

,6.f,

2
q

t)

I=L
I=2
I=3
I=4
I-5
F1
P-2
F3
h4

5
1
o

6

N9=5 joinÈs
Í1

x1(r) o

P9:3 members

4Fig

4

4

5
1

3

3

4
1,

2
a

3
1

1
1
t
1

1-1 1.8 2.6
P
L
n
Al-HIt (1) =2

cH{2}-3
IIH {3} =4
riH (4) =5

All {1} =1
À11 (21 =1
AI1 {3) =}
All {4}:1

Example. EX3 N9:6 P9:5

Resul-ts below after fifth click

4r.r,{ 6
á-t2 3

, rtt

N9=6 joints
I

X1(T)

Fig.5

P9:5 members
L23A5
34512

1,23456
012345

4 5 62 3
all 1. 6

P

L
11

A1

r2345
1

2

a

4

5

L,25 -t,25

-1,25 !,25

L2345

I 2,OO -2,O4

2 -2,OO 3,67 -L,6'l

3 -1 ,67 3110 -1 ,43

4 -L,43 2,68 -Lt25

5 -L,25 L,25

I
.,

e

4

5

o

L2345
L,60 -l ,64

-1 ,60 3,2O -1 ,6o

-1 ,60 3,2O -L,60

-1 ,60 3,ZO -L,60

5

-1 ,60 3,2O -L,

-1,60 t,

3B



InpQf joint and member data.

Typê 6 in TN9, Tab. and in TSTRfNG

Example.

á42 3
t,t

1,0 ënter, 1,1 Enter
4,319 Enter, 5 6 Enter

, 3,2.4 EnLer,
6,'7 .5 Enter +--C&----+

z

Type 5 in TP9, Tab, and 1n TSTRING

5

2 2
4

3
té

1
3

4

t11

L1

2
4

5
1 Enter 4 5 1 Enter.

1 Ent rEn

En 5,5,6, L Enter.

EI

er
í t>t

3
4 Fig. 6.

N9:6 j o j-nts
I1

x1(r) 0

23456
1.1 2-4 3.9 5.6 7.5

P1
L1
H2
A1 1

P9:5 members

a

t

5

6

l-

4

4

5
1

3
3
4

1

2
2
)
J

l_

5

.12

I 0.53 -O,53

2 '0,53 0,s3

4

5

6

3{ 6

.t3-
L23456

I 0'53 -o'53

2 -o'53 1'11 -O.59

3 -o,s9 a'25 -0'67

4 -0'67 L'44'O'77

5 .o'77 1,'64 -O'9a

t cc -0,e1 0,e1

Member numbering in reversed or-
der, 5-4-3-2-1" i.s.o. L-2-3-4-5.

Í=2
I=3
I={
I=5
I:6
FI
P=2
P-3
?=4
P=5

n {rl =0
xl tzl =1. r
xl(3)=2,4
xl ({) -3' e
xl {s} =5, 6
x1 (61 =?, 5
lL (1) =r
fi.12't=2
Lt(31 -3
LL{4}={
Ï.L (s) =5

À1I (r)=r
À1r (21=1
111 (31-r
À1r ({) =r
A1r. (sl=1

ffi(Lt=2
Er (2' =3
BË{3}-{
sl (4)=5
m{s}=6

T2
1 0,91 'O.91

2 -o,91 O,9L

3

4

5

6

3d56

sd
L2

I o'91 -O'91

2 -o,9t o,9L

3

4

5

3456

6ce

723{ 56

I
2 o,77 -O,77

-o,77 0,773

4

5

6

L23

I 0,91 -0,91

2 -0,91 L.6A -O,77

3 -o,77 O,77

4

5

6

456

I

I
2

3

4

5

6

23rl 56

o,67 -O,67

-Q,67 O,6?

r23{
0,91 -O,91

o,9r L,68 -O,77

-o,77 1,44 -O,67

-o,67 O,67

56

I
2

3

4

5

6

L 2 3'f { 5 6

0, 59 -0, 59

-0.59 0,59

6

L2345
0,91 -o.91

-0,91 1,68 -O,77

-o,77 L,44 -O,67

-o,67 1.25 -0,59

-o,59 0,59

6

I

2

3

4

5

6

L23456

I

2

3

4

5 0,53 -0,53

-o,53 0,536 St
L23{

I 0'9Í -0,91

e -0,91 L.6A -O,77

3 -o,?7 a,41 -0,67

56

4 -0.67 1,25 -O,59

-o,59 1,11 -0,53

-0,53 0,53
5

6cc
t

39



1=2 Xl (21 =9, f,
I=3 Xl (3) =3, 9
I=tl Xl ({) -0
l=5 xl{sl=l,l
I=6 Xl (61=2, {
P=I II{r}=l nn(1)=s
P=2 Lt (Zl=s nfl(2)=6
È-3 IJ|1S1=3 At(3)=6
È4 li(l!=r B[(4)=2
Ès I,1(s)=2 nn(s)=3

EXq

il1(rl-t'
A1r {2}-r
Àrl (sl-r
All (l)=r
À1.1 (5)=1

ExampLe

2 ó

6

+
3 ,/. I

3,9
-í,ó

7.r
Fig 'l

N9=6 oints
I

X1(I)

P9:5 members

1
2.4

234
3.9 1.1 '7.5

J

0 J 6

5
)
J

5

t

4

2

6

1

z
1

2
t-

1

1
1

1

P
L
-n

A1

3
4

6

1

I
o,77

2 3

-o,77

4 56

I
2

t

4

5

6

-o,77 o,77

1 2 3

-o,71

456

L o'77

2

3 -o,77 o,77

4

5

L23{56

I
2

3

4

5

6

0, 59 -0, 59

-0, 59 0, 59

L23456

1 L'4t -O,67 -Ot77

2 -0'6? 1"25 -O,sg

3 -o,77 o,77

4 o,53 -0,53

5

6 -o,59 -O, 53 1, 11

I=l II (l) =2, d

Í=2 xI (21=3, e
I=3 Xl (31=1,1
Í=4 xl (4)=7, s

I=5 x1 {5} =0
I=6 Xl {6} =5, 6
P=t I.L(r)=1
F=2 LL(2)=r
P-3 ].l{3}={
È4 r'L1+1=2
P=5 lr(sl=3

AlL {11 =1
ÀIr {2} =I
Arr {3} -1
àrr ({ I =l'
À1L (5' =1

En(r)=3
ffi(21=2
83 {3) -6
EE (tll =6
EA (51 =5

L2

1 0,67 -0,67

2 -0,67 O,57

3

4

5

6

34t56

L23{s6
I 1.aa -o,67 -o,77

2 -o,67 O,67

3 -o,77 O,77

4

5

6

123{56

I

3

0,s3 -0,53

-0, 53 0, 53

r23
! 7.,44 -O,67 -O,77

2 -o,67 O,67

3 -o,77 O,77

4

5

6

456

o,53 -0, 53

-0,53 0, 53

L234 6

I

2

3 o,91 -O,91

4

5 -0, 91 0, 91

6

I23

! r,44 -O,67 -0,77

2 -o,6? t,25

g -o,77 1,68

4

5 -0, e1

5 -0159

{56

-0,59

-0, 91

0, 53 -0, 53

-0, 53

o, 91

1, 11

I 23456
I

z o,59 -O,59

-0,59 0,593

4

5 f1,9
6

L23
o,53 -0,53

-0,53 1,11 -0,59

-o,59 L,25

{56

I

3
-0,6:

{ 0, 91 -0, 91

-o,9L !,5A -O,71

-0,67 -o,77 L,41
5

6

after 5th click for EX4

lo



Example

2

Fig. B .

N9:6 oint
I1

x1(r) 2

P9=5

2

9

4

0
2
6

5
w

)ê

S

3
10

5
9

rs
P
L
H

A1

L
t-

4

1-

4
3
5
1

2
1

2
1

3
2
5
L

I=1
I-2
I=3
I=4
I=5
P--1

P-2
F3
P-{

Xl (2) =5
:il {31=10
xl {{}=0
xl (s) -9
I.L (11 -1
lL(21-r
LL(3)-2
LL(4)-3

Arr (1,=r
AIr {2}=l
Àlt (31=1
À11 (41 -1

iE(r)=4
ffi(21-2
lEt3l=5
m(a)-5

I

1 0,50

2

3

4 -0.50

5

23 I

-or50

5

0,50

I
0,50

7.3,1 5

I -0,50

2

3

{ -0,50 o,50

l2

1 0,33 -0,33

2 -A'33 O,33

4

5

3 45

i2

I 0'83 -0,33

2 -o.33 O'33

3

4 -0'50

5

3 4

-o,s0

5

o, 50

t23 {5

o,25 -o t25

-o,25 o,25

L2

L o 'a3 -o,33

2 -0'33 o,58

3

4 -0'50

5 -o,25

3 4

-o,50

5

-a,25

0, 50

o,25

2

/ 3
9

+

123,{5

I

2

3
1,00 -1,0o

I

5 -1,00 1, 00

L23

I o'83 -0,33

2 -0,33 O,58

3 1'00

{ -0,50

S -O,25 -1,00

45
-o, 50

-o,25

-1, Oo

0, s0

t,25

I=l
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N9=f
ru=Í--
Show

@l sno'cc
DCí E(2 P(3 E)(4 ngain EÍd^j
$TORE NR=3 GET Cb PrF

ExampLe 1- AXCC222

+4 2êA {4 284 E4(--$r 4L J
2

t /,6 | /,Y | 2rr, | /,7 | 2,3 
|

N9:6
I
x1(r)
P9=5
v
IL (P)
HÍr (P)
All (P)

€4 í2qt 64 A 2€l 2 O4 /

z6 /" 2
j

2.3

The members are numbered from left to right and
the joints from right to 1eft, in nice order.
N9=6

Storlng data.
Ctick NR- to e.g. not under.lined NR:3
Click STORE, gets underlined, NR:3 as
wel-l-, NR:3. See STORE NR:3 GET

Click NR:3 under'lining disappears.

If later clicking NR:... to NR:3 then
cliek GET gets under.l-ined GET to get
the stored data. First click Again ! !

and Show shows those data.

To remove data of NR:3, click GET (or
GET if wanted) with right mouse button
and underlining of NR:3 and GET dis-
appears.
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Example 2
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x1(ï)
P9=5
P

LL (P)
HH (P)
All (P)
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Again matrix CC with elements around the main
axis with values mirrorred w.r.t. the other
axis comparj-ng with the resul-ts just found be-
fore.

Example 3.

6

\tu 2
/,

?
3ra

x/
4

4

Like the last exampl,e but now the origin of the
X1 axis is placed at joint 3r so only the joint
coordinates must be changed,
N9=6
1123456
xl_(ï) 4 1,.7 0 -2 -3.4 -5
P9=5 data Like above.
The results -l-ike those of the previous example.

eianple 4. hlith irregular numberÍng.
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All {P)
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And compare the places and values with the
examples 2 and 3.
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{,63 0,63

I234

r 1,93

2. 0,43 {,43

3 0,63
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Private Sub ÀXI4ATNCALC ( ) baae. 22
'1. composition of construótidn ma-
'trix CC with member matrices 55.
CONSTRMATCCAXMEMBER Page 20

t 2. El-ements of force vector FF,
' 2a . .loint load f orces FX (I ) .

EI-N9
For I:1 To N9
A=1*I
FF(A):Fx(I)
PP (A) =Ps 111
uU(A)=UH(I)
ss (À) =SH (I )

Next f

'2b. Primary forces due to member

'1oads alonq the member axis.
'staafas.
For p=1 TO p9 : L:LL(P) : H=HH(P)
EA:EAA(P)
DL=x1 {H) -x1 (L)
L1=Sqr(DL^2) : L11(P):L1
c=DT/LI

MEMBER Page 15

D7 (P. 1):N]*C : D"7 (P,2):N2*C
Next P

'2c. A]Èeration of forcê vector F.F.
Eor I:1 To N9
A=1*f
For P:1 To P9 : L=IL(P) : H:HH(P)
ff I:L fhen
FE (A) =PP (A) +D7 (P, 1)
Elseïf I=H Then
FF (A):PP (A; +D7 (P,2)
End rf
Next P
Next f

'3. Alteration of force vector FF
'and construction matrix CC.
'3a. Of FF in case of prescribed
'displacernents <>0.
For f:1 To N
ïf UU(I)<>0 then
For K:1 To N
FF (K) :FF (I() -Cc (K, ï ) *UU ( I )
Next K
End If
Next ï
ir3b. Of FF and CC in case of pres-
. 
r cribed d!_splacements,

'For I:1 To N
lïf PP(t):1 tn"tt
For ..j:'i To N
CC(I,J):0: CC(U, I1=6
Next J
CC(I,ï):1 : FF(I):UU(I)
End IÍ
Next I
'3c- Of CC in case of elastic,/
'springl,r supports.
For I::,- To N
rf SS(I)>0 Then
cc (ï, r) :cc (r, r) +3s (r)
Next r

t

t

I
'4. Cafculation of the unknown
'displacements UH (Ï) .

For I:1 To N: BB(I):FF(I)
For J:1 To N

AA(r,J):CC(I,J)
Next J
Next I
'The solution of the N:1.*N9
I equations.
GAUSS part 1"2

for f=l To N9
A:1* ï
uH(r):xx(A)
uu (A):1111s)
Next f
'5- Calculation of the memberend

'forces w.r.t. construqtion axis X;

'5a- Due to the disPlacements
t alone.
For p:1 To p9 : L:LL(P) : H:HH(P)
EA:EAA ( P)
MEMBERMATSsA)O4EMBER Page 2L

rT(1)=1*L
TT (2):l*11
For I:l- '!O 2 : FK(P'I):O
For J:1 lO 2 : A:TT (J)
EK (P, I):FK (P, I) +S5 (I' J) *UU (A)

Next J
Next I
'5b- Due to displacements and mem-

'ber loads along the rnember axis.
D5 (P, 1) :rx (P, 1) -D7 (P' 1)

;D5 (P' 2):tx(P,2\-D7 (P'2')
D1:x1 (H) -X1 (L) : Ll-:Sqr (DL^2) . C=DL/LL
NAA (P, 1):D5 (P, 1 ) *C

NAA(P,2):D5 (P'21 *C
Next P

'6- Calculation of the joint for-
'ces KH(I).
'6a. Due to the disPlacements
'alone.
: CONSTRMATCCÀXMEMBER page 20
For f:1 To N9
A=1*T'KH(ï):0
For J=1 To N
KH (I) =69 (ï) +CC (A, J) *UU (J)
Next ,t
r6b. Due to the displacements and
'member loads along the member
t axis.
For P:1 To P9 : I=IL(P) : H:HH(P)
If I:L Then
KH (Ï) =KH (ï) -D7 (P,1)
Elseff I=H Then
KH (I) :KH (I't -D'7 (P' 2)
End If
Next P

Next f
r7. Calculation of the rea.ctions,
For I:1 To N9
If SH(r)>0 Then
RH(I):-SH(r) *uH(ï)
Else
RH(I)=11s(I)-EX(r)
End ïf
Next I
End Sub

E

t

43



t
Private Sub CONSTRI4ATCCAXMEMBER( )
ry=N9 page 20'
For I:l- To N : For J:l To N
CC(ï,J)=O : Next J : Next Í
FOR P:1 To P9 : L:LL(P) : H:HH(P)
EA:EAA (P)
MEMBERMATS5AX}4EMBER
Tr(1):L: TT(2):H
For I:L To 2 : I1=TT(ï)
For J:1 Io 2 : J1=TT(2)
CC (I1, J1) :gg (I1, J1) +S5 (If J)
Next J
Next ï
Next P
End Sub

Subroutine CONSTRMATCCAXMEMBER wifl be extended
in coming proqrarunes for trusses beams and
frames, getting their suitabl-e names.
Same for subroutine MEMBERMATSSAXMEMBER.

Subroutine MEMBER will be used in other pro-
gratnmes. N5G and NsXX can be applied there if

I wanted.

If C2:1 Then
,X=Xe : USXX
NA:NA+I : LA(P,NA):X
NAI (P'NA) :N5 : NAR (P,NA)=N7
End If

- 
ElseIf XG>L1 Then
For I1:1 To NFA(P)
L5:L55 (p, I1 )

If L5>XG-G And L5<L1 Then r

X=L5 : NSXX
NA:NA+1 : lÀ(P,NA):X
NAL(P'NA):N5 : NAR(P,NA):N7
End If
Next ï1

ïf XG-G<Li fhen

I
Private Sub MEMBERMATSSAXMEMBER ( )

' D1:x1 (H)-x1 (L)
L1:SQR (D1-^2)
R:EA/L1
55 (1,1):R : 55 (1,2):-n
55(2,1,):-R : 55 (2,21 =g
End Sub

paqe 21

Prj-vate Sub MEIdBERO page 15
'Ca1culation of the reactions due
'to member l-oads afong the member
N1:0 : N2:0
'The concentrated foads.
For I:l- To NFA(P)
F5:F55 (P, I) . L5:L55 (P, I)
N4:F5*L5,/L1 : N3:N5-N4
N1:N1+N3 : N2:N2+N4
Next f
'The distributed 1oads.
For I:1 To NQA(P)
Q6:Q66 (P, I) : L6:L66(P,I)
Q'7:Q77 (P,I) z L7:L71 lP,I)
F:.5* (Q6+Q7)*L7 : V3:F*L6/EA
v5:Q7t,Ir7^2/ (2*F,A)
v6: (Q7-Q6) *L7^2/ ( 6*EA)
V1:V3+V5-V6
N4:V1*EAIL1 : N3:F_N4
N1:N1+N3 : N2:N2+N4
Next f
End Sub

Private Sub N5GO Page 19

'Calculation of the normaf forces
'every G meter.
NA:0 : L1:Ll-1(P)
For XG:0 To L1+G Step G

Tf xG:0 Then
X=XG : N5XX
NA:NA+I : LA(P,NA) :X
NAL (P,NA):N5 : NAR(P,na):n7
EfseIf XG>O And XG<:LI Then
C2:t
For I1:1 To NEA(P)
L5:I55 (P, 11)
ïf Ls>Xc-c And LS<:XG ?hen
X=L5 : N5XX
NA:NA+I : LA(P,NA):X
NAL (P'NA):N5 : NAR(P'NA):N7
If L5:XG Then C2:0
End If
Next 11

Private Sub N5XXO Page 1?

'Cafculoati-on of the normal force
'at X meter from member end L.
N5:BN : N7:BN
'The concentrated loads.
For I:1 To NFA(P)
F5:E55 (P, ï) : L5:L55 (P' I)
If X>L5 Then
N5:N5+F5 : N7:N7+F5
El-seIf X:L5 Then
N7:N7+F5
End If
Next I
'The distributed foads.
For I:1 To NQA{P)
Q6:Q66 (P, I) : L6:L66 (P, I)
Q7:Q7'l lP,I\ : L7:L77 (Pr I)
If X>L6 Then
If X>L6 And X<:L6+L7 Then
QB:Q6+ (Q7-Q6) * (X-L6) /L]
T:.5* (O6+QB) * (X-L6)
N5:N5+T: N7:N?+T
El-seIf X>L6+L7
T:.5* (06+Q?) *L7
N5:N5+T : N7:N7+T
End If
End If
Next ï
End Sub

NAL (P,NA):N5
End If

- 
End Jf

(P, Na):x
: NAR(P,NA):N7

NAC (P):NA

X:L1 :
NA:NA+1

Next XG

End Sub

N5XX-l--ïa

+4



l- *.N

FJ I=
L tl

H-- F*L^z/(2*Er) Z: E*L^3/tfíhtl

Q *u/n

H: Q*L^3/ (6*Er) z: Q*L^4/ (3*EI)

lrry/n

H: Q*L^3/(24*FÍl Z: Q*L^4/ (30*EIl

s= 9*1^l/ (BEI) Z: l-1e*t^3 / (L2OEÍ)

)
Fl kNm

IÍ: M*L/E] Z__ M*L^2/ (2*Eï.1

Standard formu'l as for simple beams

E is modulus of elasticity in kN,/m^2
EI is bending stiffness, EI is E*I with
ï is moment of i-nertia in m^4

EI is (kN,/m^2)*m^4 is kNm^2

EA is strain stiffness, EA is E*A with
A is cross sectial area in m^2

BA is (kN,/rn^2)*m^2 is kN

Displcement Z in m, angle H in radians

-L E:F*L,/EAat

z*ff*L^2 f (Z*EA)
€Á 7

fi=Q*l^1/ {6*EA)

2:9*t^2/ (3I'I)

\9 lv

#A
IIA: M*L/ (6*Ef )

ZC: M*L^2/ (16*Er)

HB: M*L/(3*EI)

* a ,v

AV
EB= H*L,l (4*ÊIl ?,C: M*L^21 (32*EÍ.t

AV:Ilv: 3*È4./ íZ*EII

A F
In

EJ ge

Ift-3*Ër*al {I}^z} r8- 3*8y' (?*L}

AV:EIv- 3*gJ*51 (L^3I EC: L{*Íj.Zf í32*F'L'l

q

a. tri o
A D

LHA //8
...t

ii1.6: 1-*6*5* (L+b) 1(6*L*EI)

HB: F*a*b* (L+a) / (6*L*EI)

zD: E* a^ 2*b^ 2 / (3*L*EL!

)

IIA: HB: F*L^21(16*EI)

ZC: E*L^3/ (48*EI)

HA__ riB: Q*L^3/ t24*EÍl

zc: s*Q*L^4/ (384*EI) i

IlA- Q*L^3/ (45*EI)
,.1

HB- 7*Q*L^3/ (360*Er)

aln
(

F
c4

A

€J

aA

3

a

klA

c
B

.-LEJ Èv
I

+AV
ÊA{€: 6*ÉT*Zl (L^21

AV-:BV= TZ.EÍ*Z/ lL^31

)4=

I

t

z EJ É

zC: (5*e*L^4/ (384*Er) ) /2

t?Á

zc: Elz

//l


