Part 4

Axially loaded continuous beams/members.

Each member has two member ends, each member

end is connected with a joint.

The relation between member end forces and joint
displacements depend on the strain stiffness EA

of the members. They deliver the equations with the
joint displacements as unknowns to be solved.
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When the joint displacements are known the mem-
ber end forces can be calculated.

Eor each member 2 equations are written,

each member delivers a stiffness matrix 2 x 2
which will be placed in the construction matrix.

Follows now the code of some basic subroutines
written and explained. To be copied if wanted.

Private Sub MEMBER() 15
Calculation of primary forces.

Private Sub N5SXX () 17
Calculation of the normal force each m.

Private Sub N5G{() 19
Calculation of the normal force each G m.

Private Sub MEMBERMATSS5AXMEMBER () 21
Stiffness matrix S5, size 2 x 2.

Private Sub CONSTRMATCCAXMEMBER () 20
Matric CC composed of matrices S5.
N9 joints, matrix CC size N9*1.

Private Sub AXMAINCALC () 22-25
Solving the equations with GAUSS. Part 12.

N9 joints with displacement UH(I),

N9*1 equations to be solved

Composing constructie stiffness matricX CC
with member stiffness matrices S5 with

Program AXCC111 () and 37-41

Program AXCC222() . 42
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1.1. The relation between member end forces and

joint displacements.

Fig.1l.

The drawn construction consists of (only) two
members. The member ends are connected with the
joints 1, 2 and 3, numbered from left to right.
E is the modulus of elasticity.

Al and A2 are two cross—sectional areas.

EA is the strain stiffness, is E times A.

EAl for member 1 and EA2 for member 2.

The member lengths are L1 and L2.

The member axes X are assumed to be directed
from lowest to highest member end number, so to
the right. The construction axis X is assumed
to the right as well, but not necessary. For
more see page about x- and X axis.

Fig.2.

On the member ends of the from the joints
loosened members act memberend forces, F12 and
F21, F23 and F32. The assumption for their
directions is to the right, according to the
member axes. (Member axes and construction axis
are not related, do not depend on each other.)

Fig.3.

The joint displacements UA and UB, being also
member end displacements, are assumed to be di-
rected to the right, as the member axis x.

Now there are two possibilities to derive the
same relation between memberend forces and
joint displacements.

The first possibility.

Is UB larger then UA, then the member will be-
come AL=UB-UA longer. The member is a tension
member. On the member ends act tension forces
equal in magnitude, the forces F as the figure
shows.

With Hooke's law is AL=FL/EA.

(F times L divided by E times A.)

From which follows F=(EA/L)AL.

With member stiffness factor R=EA/L becomes
F=RAL. Then with AL=UB-UA follows

F=R (UB-UA) or F=R (-UA+UB) .

Memberend forces FAB and F at member end A are
the 'same' forces. F=-FAB or FAB=-F.
With FAB=-F follows FAB=-R(-UA+UB) or

FAB=R (UA-UB) . 1)

Memberend forces FBA and F at member end B are
the 'same' forces. F=FBA or FBA=F.

With FBA=F follows FBA=R(-UA+UB)}. 2)

Now two equations are found which give the
relation between

memberend forces FAB and FBA, and

the joint displacements UA an UB, by
using member stiffness factor R=EA/L.
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The two equations can be represented in matrix
form in which is

f the force vector (or force column),

S5 the member stiffness matrix, and

u the displacement vector (or —column).

An element of f is equal to a row of matrix S5
multiplied by column u.

FAB= S5(1,1)*UA + S5(1,2)*UB
R*UA -R*UB

FBA= 85(2,1)*UA + S5(2,2)*UB
-R*UA +R*UB

These memberend forces FAB and FBA arise in

consequence of the joint displacements UA and

UB.

The second possibility.

Fig.5.

Not displacement UB is larger then UA, but now
UA is larger then UB. The member will become
AL=UA-UB shorter. It is a compression member.
At the member ends act equal compression forces
F because the member is in equilibrium.

With Hooke's law is AL=FL/EA, or F=(EA/L)A

With member stiffness factor R=EA/L

becomes F=RAL zodat F=R (UA-UB) .

At member end A both memberend forces represent
one single force.
Then FAB=F so that FAB=R (UA-UB) . 1)
To memberend B applies the same.

Then FBA=-F so that FBA=-R(UA-UB) or

FBA=R (-UA+UB) . 2)

One finds the same two eguations as in the case
of the tension member of fig.3. (The relation
between £ , 55 and u for the same member cannot
be different ofcourse.)

The relation between memberend forces and joint
displacements is determined by strain stiffness
EA and member length L, so by member stiffness
factor R=EA/L.

If the construction consists of one single
member then construction stiffness matrix CC
(following page) is the same member stiffness
matrix S5.

Fig.6.

If the construction consists of two members
then one gets two sets of two equations on the
left represented in matrix form. Both sets of
two equations can be united to one single set
of three equations with the three unknown dis-
placements UA, UB and UC.



FAB matrix CC.

Fig.7.

- ) Joints and members are seperated/loosened from

FAB | A B FB4 each other. The on the member ends working mem-
- berend forces are, according assumption, direc-

. ted to the right. On the joints act opposite

directed memberend forces equal in magnitude,

£FBC directed to the left.

/4 1.2. From member matrices S5 to construction
L
|

On joint A works, see fig.6,

- x FAB = RI1*UA -R1*UB + 0*0UC 1
ABC. ' B e FcB )
—_— ——
l On joint B works
' FBA+FBC= -R1*UA +R1*UB +R2*UB —-R2*UC
B ¢ = —R1*UA + (R1+R2)*UB -R2*UC 2)
- .
Fig.7. On joint C works
FCB = 0*UA -R2*UB +R2*UC 3)
Thus arise three equations which are on the
r r P left represented in matrix form.
FAB R1 -R1 0 UA With forcevector f,
construction stiffness matrix CC, and
FBA+FBC| = | -R1 R1+R2 -R2 | = | UB displacement vector u.
[ | Both sets of two equations are extended to a
iFCB 0 -R2 R2 uc set of three equations as given here below,
= = — which will be added.
£ cc u
FAB= R1*UA-R1*UB+ 0*UC 1)
FBA=-R1*UA+R1*UB+ 0*UC 2")
0 = O0*UA+ 0*UB+ 0*UC 3")
0 = O0*UA+ 0*UB+ 0*UC 1)
FBC= O0*UA+R2*UB-R2*UC 2'")
FCB= (0*UA-R2*UB+R2*UC 3'")
Bdding equation 1') and 1'') gives equation 1)
V> !
Ti ~8 FC as shown here above, FAB= ... And so on.
1 |
A = Q Fig.8.

On the joints work the memberend forces, and
the joint load forces FA, FB, FC of which the
FA F8 Fe assumption for the direction is to the right.

e —d —_— . Il s - . .
A Lot T . ~-— Each seperated joint must be in equilibrium.

4
48 ~oA B r8e ros ¢ 2 hor. joint A =0

FA-FAB=0 = FAB=FA
£ hor. joint B =0
Fig.8.
FB-FBA-FBC=0 = FBA+FBC=FB
£ hor. joint C =0
R1 Rl 0 ! UA P FC-FCB=0 = FCB=FC
_ . _ In this way one gets a set of equations from
Rl RI1+R2 -R2 5 UB t==| EB | which the displacements can be solved.
| 0 -R2 R2 uc FC |
1 -1 3 J
cC u £



Example.

42 5]_/€‘Ek‘ 4’,3 X Fig.1l.
A 3&4 284 |4 The three joint numbers are arbitrarily chosen,

they are memberend numbers as well.
The strain stifnesses are expressed in EA.
| The member stiffness factors are

Fig.1. R1=EA1/L1=3EA/0, 6=5EA and
R2=EA2/L2=2EA/0, 5=4EA.

F25 5 =5 uz The joint load forces are
=EA ' F2=0 kN, F5=18 kN and F4=0 kN.

= = = As on the preceding page the set of three equa-
tions can be found. To come to a solution one,
or two, displacements must be known. Here of
F54 4 -4 U5 both cantilevers. The displacements of joint 2
=EA . and 4 are given, are prescribed. U2=0 and U4=0.
F45 -4 4 U4 To compute the unknown displacement U5 only one
a = R equation is needed. Three equations will be
kept, but some elements of CC and f will be
changed, :

~2
2L = Fig.2.
<28 _ EF5 Joint displacement U2 is prascribed, so not an
i SJ:_—F : unknown. Then first row and first column of
F52 F&ey /:9 construction matrix CC are filled with zeros,
but the element on the main diagonal is made
cCc(1,1)=1.
r~45 v The elements of force vector £ do not change
because displacement U2 is zero.
Fig.2. The same for U4. Third row and third column are
filled with zeros and CC{3,3) becomes 1.
The first and third element of force vector f
= — = are zero because the joint load forces F2 and
5 -5 0 u2 0 ¥4 are zero. If they were not zero then they
| would have been made zero because U2=0 and U4=0.
EA | -5 5+4 -4 U5 18 N S -
In this way the number of equations remains the
0 -4 4 U4 0 same. And in this way the sets of equations
in programs

Q

9]
e
|

CC - u=f will be prepared to solve the set

= BA - x = b with the elimination method of

1 0 o0 U2 0 h
GAUSS,

EA 0 9 0 U5 18
See program GAUSSNEQUATIONS.

0 0 1 U4 0
Written out the equations become

EA(1*U2 +0*U5 +0*U4)= 0 = U2=0
EA(0*U2 +9*U5 +0*U4)=18 or

EA(9*U5)=18 = U5=2/EA.
EA(0*U2 +0*U5 +1*U4)= 0 = U4=0

And so the equations are solved.

(Numbering the joints from left to right with
2, 5 and 4 might be a little bit 'strange',
but it is possible. Ofcourse, when programming

a regular way of numbering is necessary to
avoid problems.)
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Now as the displacements are known all the mem-
berend forces can be computed.

Fig.3a en 3b.
With the two equations for the first member
follows when U2=0 and U5=2/EA

F25=EA (5*U2-5%*U5)
=EA(5*0 -5*2/EA)=EA(-10/EA)=-10 kN.

The answer for F25 is negative. Thus the member
end force is not directed to the right as as-
sumed but directed to the left. The force does
not press on the member end 2 but pulls at the
member end.

F52=EA (-5*U2+5*U5)
=FA(-5*0 +5*2/EA)=EA(10/EA)=10 kN

A positive answer for F25. So this member end
force is directed to the right as assumed. The
force pulls at member end 5. a

One sees now that the member is tension member.

Fig. 4a en 4b.
In the same way for the second member with
U5=2/EA en U4=0.

F54=EA (4*U5-4*U4)
=EA (4*2/ER-4*0)=EA (8/EA)=8kN

A positive answer for F54. Thus the member end
force is directed as assumed to the right. The
force presses on memberend 5.

F45=EA (-4*U5+4*U4)
=EA (-4*2/EA+4*0)=EA{-8/ER)=-8kN

A negative answer. Thus member end force F45 is
not directed to the right as assumed, but to
the left. The force presses on member end 4.
The member is a compression member.

Fig 5.

Normal force diagram.

Fig.6.

Now the memberend forces acting on the joints
are drawn with their real directions, equal in
magnitude but opposite directed to those of fig.
3b and 4b.

The reactions are assumed to be directed to the
right and are found with horizontal equilibrium
of the joints.

% hor. joint 2 =0

RH2+10=0 = RH2=-10 kN
% hor. joint 4 =0
RH4+8=0 = RH4= -8 kN

For both ractions a negativ answer. So they are
not directed to the right as assumed but to the
left.

Joint 5 is in equilibrium, 18-10-8=0.

Fig.7.
The construction is in equilibrium, £ hor. =0.



1.3. Joint load forces and hold forces.

A7A FAB o4 Fig.1l.

The construction consists of two members and

A _ ra e three joints. While unloaded the joints A, B

- and C are hold at place with the hold forces

A ] Q FHA, FHB and FHC. Assumed directions to the
. left.

F{?* Next the joint load forces FA, FB and FC are

applied. Assumed directions to the right.

A S /2 Fig.2.
O - L -—d When the joints are released the hold forces
A FA8 FBA B FBC FcB ¢ are not there anymore and the joint load forces
become active. The construction deforms, the
N members deform and the joints displace. At the
F{? 2. member ends arise member end forces directed to
the right according assumption to the right.
On the joints act forces as large as the
FAB FA memberend forces but opposite directed, thus to
the left.

FBA+FBC becomes | FB
Fig.3.
FCB FC As shown on page Y force vector f will be
- filled with joint load forces using horizontal
equilibrium.
After that the unknown displacements UA, UB and
Fig.3. UC are solved out of the equations.

|Hh

Yoy P -] LC Joint load forces, and
z - -
member load forces, and

A B o hold forces.

Fig.4.

When also member loads are applied between the

joints with an asssumed direction to the right
4 B FC then the hold forces must become larger to

keep the joints at their places.

c

Because of these member load forces on the
still hold joints will work to the right
directed forces FPAB, FPBA, FPBC and FPCB.

FPAB FPBA ARPBC [FpCa

Flg4.

These forces are called primary forces.

#A RB Fa
These forces are computed as the reactions of
I FA3 ~BA Fac ~es8 the on both ends fixed members. :
-—— - - ———
A4~ —w 33— "¢ Fig.s.
<P48  FPS. EPCB J
FRAS A FPBC As above the elements of force vector f follow
from the equilibrium of the joints.
# % hor. joint A =0
FAB FA+FPAB FA+FPAB-FAB=0 = FAB=FA+FPAB
FBA+FBC | becomes; FB+FPBA+FPBC % hor. joint B =0
FB+FPBA+FPBC-FBA-FBC=0 = FBA+FBC=FB+FPBA+FPBC
FCB FC+FPCB
- % hor. joint C =0
£ FC+FPCB-FCB=0 = FCB=FC+FPCB
Fig.5.

Thus, force vector f is now filled with joint-
load forces plus primary forces.
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Example.

Fig.1l.

The construction consists of two members and
three joints which are numbered from left to
right.

The member stiffness factors are
R1=EA1/L1=12EA/4=3EA and R2=EA2/L.2=10EA/5=2EA.

The joint load forces are

F1=0 kN, F2=-11 kN and F3=0 kN.

Along member 2 acts a uniformly distributed
load of 4 kN/m directed to the right.

The reactions of this member hold at both ends
are (5*4)/2=10 kN, they are directed to the
left, on the joints in opposite direction, thus
to the right.

In the following calculation rate number EA is
omitted.

Fig.2 en 3.
The elements of force vector £ follow with
% hor. =0 of the joints.

The primary forces are
FP23=10 kN and FP32=10 kN.

% hor. joint 1 =0
F1-F12=0 = F12=F1=0 kN
% hor. joint 2 =0
F2+FP23-F21-F23=0
= F21+F23=F2+FP23=-11+10=-1 kN

% hor. joint 3 =0
F3+FP32-F32 = F32=F3+FP32=0+10=10 kN
Fig.3.

The displacement of joint 1 is known, is pres-—
cribed, is U1=0. Therefore the first row and
first column of construction matrix CC are
filled with zeros except the diagonal element,
this becomes CC(1l,1)=1. (See page ¥4 .)

The first element of force vector f is zero,
F12=F1=0.

Multiplication of the first row of CC with u
delivers

1*Ul +0*U2 +0*U3=0 (this zero is the first
element of f) and gives Ul=0. That's correct,
but if this first element of f is not zero,
thus if F1<>0, then would become Ul<>0; in that
case one must correct Ul and make it zero.
Because the whole set of three equations will
be used in the programmatic solution...later.
At this moment without programming. Then there
are two equations left to solve.

5*U2-2*0U3=- 1 2)
-2*02+2*U3= 10 + 3)
3*02 = 9 from which U2=3,

and given in eq. 2) follows
5%3-2%U3=-1 or -2*U3=-16 so that U2=8.
(And with EA then U2=3/EA and U3=8/EA.)

The answers for U2 en U3 are positive, joint
2 en 3 displace as assumed to the right.
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1.4. Calculation of the member end forces.

Fig.4a.

Also now calculating omitting stiffness EA, it
‘disappears’'.

With Ul1=0 and U2=3 follow with 'row times co-
lumn',

F12= 3*0-3*3=-9 kN
F21=-3*0+3*3= 9 kN

These are member end forces as result of dis-
placements alone. As there are no member loads
these forces are the final member end forces.

Fig.4b.

The member end forces as they really act on the
member ends.

A negative answer for F12, so not directed to
the right as assumed, but to the left.

A positive answer for F21, so as assumed direc-
ted to the right.

Fig.b5a.

Next member 2 with U2=3 and U3=8.
F23= 2*3-2*8= 6-16=-10 kN
F32=-2*3+2*8=-6+16= 10 kN

These are member end forces as reult of dis-
placements alone.

Fig.5b.
The memberend forces as they really act on the
nmember ends.

Fig.5c.

As result of member loads alone, arise on the
before holded/fixed member ends forces of 10 kN
directed to the left.

Fig.5d.

The member end forces as result of displace-
ments alone, fig.5b, and

memberend forces as result of member loads
alone, fig.b5c,

when added they deliver the final member end
forces of member 2.

At member end 2 a force of 20 kN which pulls on
the member end, and at member end 3 a force
equal to zero.

Fig.6.
The normal force diagram. The members are sub-
jected to tension.

Fig.7.

The elements of the total force vector f are
calculated using the original, not altered,
construction matrix CC.

K1=F12 = 3*0 -3*3 +0*0= 0- 9+ 0= -9 kN
K2=F21+F23= -3*0 +5*3 -2*8= 0+15-16= -1 kN

K3=F32 = 0*0 -2*3 42*8= 0- 6+16= 10 kN
These are the so-called joint forces as result
of the displacements alone, assumed direction
to the left.

More about this later, see page
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1.5. The elastic/springy support.

Fig.la.

Joint A is supposed to be elasticly supported.
A spring is drawn at A, a bit large, and the
axis does not coincide with the member axis,
just to be more clear.

If joint A displaces UA to the right the spring
will be stretched.

The member will exercise on the spring end on
the right a spring force VKA to the right.

On joint A itself a spring force VKA is
exercised to the left.

With SA as spring constant follows VKA <« =SA*UA.

Fig.1lb.

In this case the spring is pushed in if joint A
displaces UA as assumed to the right.

Then the member will exercise on the spring end
on the left a spring force VKA to the right.

On joint A itself a spring force VKA is
exercised to the left.

Fig.2.

Then on joint A act member end force
FAB=R1*UA-R1*UB, see page 2 , and
spring force VKA=SA*UA.

The first element of the force vector becomes
FAB+VKA=R1*UA+SA*UA-R1*UB=(R1+SA) *UA-R1*UB.

Is also joint B elastic supported then if joint
B displaces UB to the right the on the joint
acting spring force VKB is directed to the left.

Then VKB <« =SB*UB.

On joint B act now member end force
FBA=-R1*UA+R1*UB, and member end force
FBC= R2*UB-R2*UC, and spring force
VKB= SB*UB.

The second element of f becomes

FBA+FBC+VKB=-R1*UA+R1*UB+R2*UB-R2*UC+SB*UB or
=—R1*UA+ (R1+R2+8SB) *UB-R2*UC.

If there's no spring at C then the third

element of force vector f

FCB=-R2*UB+R2*UC.

The relation between member end forces and

spring forces, and the joint displacements, is

given on the left in matrix form.

The spring constants SA and SB are stiffness
factors like RI1=EA1l/L1 and R2=EA2/L2.

EA1/L1 dimension, [kN/m"2]*[m"*2]/m is [kN/m].
So one can see now that when a joint is elas-
ticly supported then the concerning spring

constant is added to the belonging/concerning
diagonal element of construction matrix CC.

g
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Example.

Fig.1.
The strain stiffness factors are

R1=EA1/L1=2EA/0, 5= 4EA and
R2=EA2/1L.2=3EA/0,5= 6EA.

Joint 1 is elasticly supported. The spring con-
stant S1, a stiffness factor as well, is here
expressed in strain stiffness EA, S1=2EA.

The displacement of joint 3 is prescribed,
U3=0.

In the calculation EA is omitted. The displace-
ments one will find finally in 1/EA.

Fig.2.

The first element of force vector f is member
end force F12 plus spring force VKI.

The first diagonal element C(1,1) is stiffness
factor R1=4 plus spring constant S1=2.

Fig.3.

Joint load forces F1l=0 and F2=0, and F2=22 kN
are as assumed directed to the right.

The second element of f then becomes 22 kN.
The two equations to find Ul and U2 now are

6*Ul- 4*U2= 0 1)
-4*U1+10*02=22 3) times 1.5 gives
-6*U1+15*02=33 3") 1) + 3') gives
11*U2=33 thus U2=3/EA, in 1) follows
6*U1-4*3=0 so that Ul=2/EA.
Fig.4 en 1.

With £ = 85 u the member end forces for each
member can be determined.

Member 1.

Fl12= 4*Ul1-4*U2= 4*2-4%3= 8-12= -4 kN
F21=-4*U1+4*U2=-4*2+4*3=-8+12= 4 kN
Member 2.

F23= 6*U2-6*U3= 6*3-6*0= 18-0= 18 kN
F32=-6*U2+6*U3=-6*3+6*0=-18+0=-18 kN

The forces acting on the member ends and on
joint 2 are drawn with their real directions.
Member 1 is a tension member and member 2 a
compression member.

Joint 2 is in equilibrium.

Calculation of the joint forces. They are the
elements of f of fig.Z2.

K1=F12+VKl= 6*2- 4*3+0*0= 12-12= 0 kN
K2=F21+F23=-4*2+10*3-6*0= -8+30= 22 kN
K3=F32 = 0*2- 6*¥3+6*0 =-18 kN

Fig.5.

The spring force is reaction force as well. Is
assumed that the direction of reaction force
RH1 to the right, and of the spring force' to
the left, see preceding page, then is
RH1=-VK1=-81*UA=-2EA*2/EA=-4 kN. Minus 4, so
not as assumed to the right but to the left.
RH3 follows with ¥ hor. joint 3 =0.
RH3+F3-K3=0 or RH3+0-(-18)=0 so that
RH3=-18 kN, thus directed to the left.
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1.6. About construction axis X and member

axis x.

Fig. la and 1b.

FABX and FBAX are member end forces with
respect to construction axis X, assumed to be
directed to the right. The capital letter X
indicates these forces.

Fig. 2a and 2b.

It is assumed that the origin of member axis x
is A and that this axis is directed from A to B.
The member end forces FABx and FBAx (indicated
by the small letter x) are directed according
to the direction of the x-axis.

Is the lowest member end number L equal to A,
and the highest member end number H equal to B,
then the member end forces FABx and FBAx are
directed according to the x-axis from L to H.
There are no member loads between the joints,
or member ends.

Member end forces w.r.t. construction axis X
and member axis x are equal.

Fig.la and 2b.

F25X= F25x F52X= F52x

Fig.1lb and 2a.

F25X=~F25x F52X=-F52x

One may say that the second member 2a resp. 2b
is equal to the first member la resp. 1lb, which
is turned over 180 degrees about A.

Fig. 3a, 2a and 1la.

If the codrdinates X1(L) and X1{(H) of the
joints, or member ends, are given then one can
write

D1=X1 (H) -X1 (L) and the member length becomes
L1=SQR (D1~2) and is C=D1/L1.

D1 is positive, thus C=D1/Ll1=+1, also positive.
The member end forces w.r.t. member axis x are

FLHx= FLHX'C = F25X-C 1is F25X and
FHLx= FHLX-C = F52X-C is F52X.

Fig.3b, 2b and 1b.

Now the member end numbers are exchanged.

The member axis x is now directed to the left,
and construction axis X is directed to the
right as is assumed.

D1=X1 (H) -X1 (L) Also now, first the coordinate
with the highest joint number H, and then the
coordinate with the lowest joint number L.
L1=SQR(D172) and C=D1/L1.

D1 is negative, then C=D1/Ll=-1, also negative.
The member end forces can be found with the
formulas here above.

FLHx= FLHX-C = F25X-'C is -F25X and
FHLx= FHLX-C = F52X-C 1is -F52X.

Negative answers in this case. Member end for-
ces FLHx and FHLx are not directed to the left
according to the assumed direction of the x
axis, but to the right.
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1.7. Primary forces as result of member load
forces along the member.

Fig.4a.

It is assumed that the concentrated loads and
distributed loads are directed as the member
axis x from the lowest member end number L to
the highest member end number H.

While unloaded the member is hold at both
member ends. Then the loads are applied.

The reactions which arise are directed to the
left, N1 at L and N2 at H. On the joints these
forces are directed to the right.

The member loads deliver on the joints acting
primary forces FPLH and FPHL with an assumed
direction as the construction axis X to the
right. So on the member ends they are opposite
directed, to the left.

Force vector f is now filled with joint load
forces and primary forces:

the L-th element with FL+FPLH= FL+N1-C and
the H-th element with FH+FPHL= FH+N2-C.

See fig.3a preceding page.

C=D1/Ll=+1

Forces N1 and FPLH acting on joint L, and the
forces N2 and FPHL acting on joint H have the
same direction.

When the member end forces FLHX and FHLX as
result of the joint displacements are
calculated they together with the primary
forces will give the final member end forces.

FLHX Dbecomes FLHX-FPLH= FLHX-N1-:C
FHLX becomes FHLX-FPHL= FHLX-N2-C

Fig.4b.

Now the member end numbers are exchanged. The
member axis x is directed from lowest to
highest memberend number, thus to the left.

The assumption for the direction of the member
loads is that of the member axis x. The reac-—
tion forces N1 and N2 acting on the member ends
are now directed to the right, so on the joints
to the left.

The elements of the force vector are now also:
the L-th element with FL+FPLH= FL+N1-C and
the H-th element with FH+FPHL= FH+N2-C.

See fig. 3b.

C=D1/Ll1=-1 =

The on joint L acting forces N1 and FPLH are
opposite directed, and

the on joint H acting forces N2 and FPHL are
opposite directed.

For the final member end forces follows:

L
FLHX becomes FLHX-FPLH= FLHX-N1-C and
FHLX becomes FHLX-FPHL= FHLX-N2-C.

The on the member ends acting forces N1 and
FLHX have the same direction and must be sum-
med/added. That’s right because C=-1.

The same applies for N2 and FHLX.
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Example.

Fig.1,

The construction consists of two members with

equal length and the same strain stifness 4Ea.
The three joints are numbered 1, 2 and 3 (step
1) but arbitrarely to explain the preceding

page.

The member stiffness factor is
R=4EA/L1=4EA/4=1.

On the left for both members the relation

f = 55 u is given.

Both sets of equations will be composed to a
set of three equations with memberend forces
and displacements in order 1, 2, 3.

The joint load forces are all zero.
F1=0 kN F2=0 kN F3=0 kN

Fig.2a.

The second member is loaded with a to the right
directed member load force of 20 kN.

Member axis x is directed from L to H, from
joint 2 to joint 3. For the member loads it was
assumed that they are directed as the member
axis x. From that followed the assumption that
the forces N1 en N2 are opposite directed to
the x-axis. N1 at the lowest, N2 at the highest
memberend number.

N1=-(20*2,4) /4= -12 kN and
N2=-(20*1,6) /4= -8 kN. (see formula page 45)

Fig.2b.
On joint 1 acts F1=0, and

on joint 2 acts F2=0 and the primary force
FP23=N1-C, and

on joint 3 acts F3=0 and the primary force
FP32=N2-C.

The origin of construction axis X is joint 1,
so the joint coordinates are known.

X1{(1)= 0 m X1(2)= 8 m X1(3)=4 m
For the second member is

D1=X1 (H) -X1(L)=X1(3)-X1(2)=4-8= -4 m, and is
C=D1/L1=-4/4=-1.

Then the primary forces become

FP32=N2'C= (-8) (-1)= 8 kN and
FP23=N1-C=(-12) (-1)= 12 KkN.

The load of 20 kN causes on the joints 2 and 3
primary forces directed to the right indeed.

Fig.3.
The force vecor is filled with joint load for-

ces and primary forces.
Construction matrix CC will be altered because

of the prescribed displacements Ul=0 and U2=0.
Finally there is one single equation left.

EA(0*U1+0*U2+2*U3)=12 from which follows
U3=6/EA.
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1.8. Member end forces with respect to con-
struction axis X.

Fig.4.
By means of f = S5 u for the first member one
finds
F13X=EA (1*Ul-1*U3)
=EA(0-1(6/EA))=-6 kN,
a negative answer, so not as assumed direc-
ted to the right but to the left, and
F31X=EA (-1*Ul+1*U3)
=EA (0O+1 (6/ER) )= 6 kN,
a positive answer, so as assumed directed
to the right.
There are no member loads so that these forces
are the final member end forces.
Fig.5a.
For the second member follow
F23X=EA(1*U2-1*U3)
=EA(0-1(6/EA))=—-6 kN, not directed to the
right but to he left, and
F32X=EA (-1*U2+1*U3)
=EA (0+1 (6/EA))= 6 kN, directed to the right
as assumed.
These are member end forces caused by the dis-
placements alone!
Fig.5b.
The on the joints acting primary forces are
assumed to be directed to the right like is
assumed for joint load forces and the X-axis.
On the member ends act forces equal in
magnitude but opposite directed, so to the left.
On the preceding page was found
FP23= 8 kN and FP32=12 kN which are the
result of the member load.
The final member end forces are found by adding
fig.5a and 5b.

Fig.5c.

F23X becomes F23X-FP23=-6-(-8) =-14 kN, not
directed to the right but to the left.

The force pushes on member end 2.

F32X becomes F32X-FP32= 6-(-12)= -6 kN, not
directed to the right but to the left.

The forse pulls on member end 3.

Member end forces w.r.t. member axis x.

Fig.6a. (see also fig.4.) The first member.
D1=X1 (H)-X1(L)=X1(3)-X1(2)=4-0= 4
C=D1/L1=4/4=+1

FLHx= FLHX-C Fl13x= F13X:C=-6(+1)=-6 kN, so
not as assumed from L to H, as the x—-axis, but
opposite directed, to the left.

FHLx= FHLX-C F3lx= F31X:C= 6(+1)= 6 kN, so
as assumed directed as the x-axis to the right.
Fig.6b. (see also fig.5c.) The second member.
P1=X1(H)-X1(L)=X1(3)-X1(2)=4-8=-4
C=D1/Ll=-4/4=-1

FLHx= FLHX-C F23x= F23X-C=-14(-1)=14 kN, so
as the x-axis directed to the left.

FHLx =FHLX-'C F32x= F32X-'C= -6(-1)= 6 kN, so
as the member axis x directed to the left.

Fig.7.

The normal force diagram. Left of the concen-
trated load a tension force of 6 kN, right of
it a compression force of 14 kN.
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— Private Sub MEMBER ()

'Calculation of the reactions due to
'member loads along the member.

N1=0 : N2=0

'The concentrated loads.

For I=1 To NFA(P)

F5=F55(P,I) : L5=L55(P,I)
N4=F5*L5/L1 N3=F5-N4
N1=N1+N3 N2=NZ+N4
Next I
66 7
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1.9. Private Sub MEMBER()

Subroutine for the calculation of the reactions
N1l and N2, of the at both ends holded/fixed
member as result of member loads along the
member. The primary forces are opposite direc-—
ted to N1 and N2, see page /2.

For a member P there are

NFA (P) concentrated loads, and

NQA (P) distributed loads.

Fig.1l en 2a.

For each load case the reactions N3 and N4 are
calculated and added to preceding values of N1
and N2; in the beginning they are set N1=0 and
N2=0.

The concentrated loads.

Fig.2a en 2b.

For I=1 To NFA(P)

The load forces are F55(P,I) and the distances
are L55(P,I). For convenience is written

F5=F55 (P, I) L5=L55(P, I)

On the member fixed on the left act a load F5
and the unknown reaction N4 at member end B.
Acts alone force F5 then part AC becomes longer
and C will displace over V1 to the right.

With Hooke is AL=FL/EA, then follows
V1=F5*L5/EA

(EA is modulus of elasticity E times member
cross-section A.)

Part CB is not loaded, so also B displaces over
V1l to the right.

Acts alone the to the left directed force N4,
then B will displace over V2 to the left.
V2=N4*L1/EA

The displacement of B must be zero, thus
Vi-v2=0 oxr F5*L5/EA-N4*L1/EA=0 so that
N4=F5*L5/L1.

W % hor. =0 follows N3-F5+N4=0 so that
N3=F5-N4.

The calculated forces N3 and N4 are added to
the preceding values of N1 and N2. Then the new
values become

N1=N1+N3 N2=N2+N4.

And then the following concentrated load with
Next I.

The distributed loads. (see also next page)

Fig.3a.

This time N3 and N4 are calculated for each
distributed load.

For I=1 To NQA(P)

Q6=066 (P, I) Q7=Q77 (P, I)
Lo=L66 (P, I) L7=L77(P,I)
Fig.3b.

If the member fixed at the left end is loaded
only with the distributed load, then D and B
will displace over V1 to the right.
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'The distributed loads.
— For I=1 To NQA(P)
Q6=066(P,I) : L6=L66(P,I)
Q7=Q77(P,I) : L7=L77(P,I)
F=.5* (06+Q7)*L7 : V3=F*L6/EA

V5=Q7*L7~2/ (2*ER)
V6= (Q7-Q6) *L7"2/ (6*EA)
V1=V3+V5-V6

N4=V1*EA/L1l : N3=F-N4
N1=N1+N3 : N2=N2+N4

Next T
— End Sub
o6 &
4 (———
4
- = i £Z : +‘//.
F‘
2 ¢ .
V3 Va3
Fig.4:
Fig.5b
: 3
1T—= %
oz-gc Lo Y&
Fig.5c.

Fig.4.

The forces along the member of the trapezium
like divided distributed load delivers force ¥
at C.

The area of the trapezium is
F=0.5* (Q6+Q7) *L7

Acts only force F then C and B will displace
over V3 to the right.

With Hooke is AL=FL/EA so that V3=F*L6/EA.

Fig.5a,5b en 5c.
Next the member is thought to be clamped at C
and is the displacement of D calculated due the

forces along part CD.
The displacement of D, and of B, is V1=V3+V4.

To find V4 the trapezium like load is divided
in a rectangular load directed to the right,
and a triangular load directed to the left.

The rectangle.

Fig.b5b.

The to the right directed forces of te rectan-
gular load do displace D an B over V5 to the
right. With the formula of page 4% follows
V5=Q7*L7~2/ (2*EA) .

The triangle.

Fig.5c.

The triangular load with forces directed to the
left give D and B a displacement over V6 to the
left. With the formula follows
V6=(Q7-Q6) *L7"2/ (2*EA) .

The effect V4 over CD due to the trapezium is
equal the effect V5 of the rectangle lessened
with the effect V6 of the triangle.

V4=V5-V6 With V1=V3+V4 follows V1=V3+V5-V6.
Finally the effect Of force N4 which gives a
displacement of B over V2 to the left, fig.3b.
V2=N4*L1/EA

The displacement of B must be zero.

V1-v2=0 of V1-N4*L1/EA=0 from which
N4=V1*EA/L1.

Z hor. =0 gives N3-F+N4=0 so that
N3=F-N4.

The this way calculated N3 and N4 are added to
the previous values of N1 and N2,

N1=N1+N3 : N2=N2+N4

and then the next distributed load with
Next I.

And the end of the subroutine with

End Sub.
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—— Private Sub N5XX()
'Calculation of the normal force
'at X meter from member end L.

N5=BN : N7=BN

'The concentrated loads.
For I=1 To NFA(P)
(h F5=F55(P,I) : L5=L55(P,I)

If X>L5 Then
N5=N5+F5 : N7=N7+F5
ElseIf X=L5 Then

N7=N7+F5
End If
—— Next I
5
: t—
S |
Fig.3a.
-3
]
X =45
4o
Fig.3b.

1.10. Private Sub N5SXX()

Calculation of the normal force at X meter from
memberend L.

Fig.1.

The main calculation, see page 22 , delivers
for a member P

member end force NAA(P,1l) at member end L, and
member end force NAA(P,2) at member end H.

Fig.2a.

On cross-section C acts from left onto right a
normal force N5 with a direction as assumed for
the member end forces NAA(P,1) and NAA(P,2).

On section C' acts from left onto right a nor-
mal force N7 with a direction as well as assu-
med for the member end forces NAA(P,1l) and
NAA(P,2).

On section C acts from right onto left a normal
force as large as N7 but opposite directed.
When applying a real section and seperating the
two parts then on the sections of the two parts
always act forces as large as but opposite
directed.

Fig.2b.

Acts on section C a lcad force F¥5, as assumed
directed from L to H, then follows with hori-
zontal equilibrium of section C

N5+F5-F7=0 which gives N7=N5+F5.

Said in another way, the on section C' acting
as assumed to the right directed normal force
N7 is egual the resultant of N5 and F5, so that
N7=N5+F5.

Acts one more member load force F5 then N7 be-
comes larger, and F5 is added to the previous
value of N7 with N7=N7+F5.

The start values of N5 and N7, when X=0, so at
member end L, are BN=NAA(P,1) which must be gi-
ven before calling subroutine N5G page . With
this subroutine normal forces are calculated
every G meter using the just considered subrou-
tine N5XX.

Normal force NAA(P,1) pushes on member end L
because the force is directed as assumed from L
to H. That happens to be the same direction

as that of member axis x at L. Also the normal
forces N5 and N7 are compression forces as
assumed. (It could have been different if the
assumptions would have been different.)

The concentrated loads.

For I=1 To NFA(P)

F5=F55(P,I) : Lb=L55(P,I)

Fig.3a.

If X<L5 then N5 and N7 stay equal.

If X>L5 then become N5=N5+F5 and N7=N7+F5.
Fig.3b.

Elself X=L5 Then In that case N5 left of the
section does not change, but N7 right of the
section does, so that N7=N7+F5.

End If and then

Next I for the following concentrated load.
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'The distributed loads.
—— For I=1 To NQA(P)
06=066 (P, I) : L6=L66(P,I)
Q7=Q77(P,I) : L7=L77(P,I)
— If X>L6 Then
— If X>L6 And X<=L6+L7 Then
08=06+(Q7-06) * (X-L6) /L7
T=0.5* (Q6+08) * (X-L6)
N5=N5+T : N7=N7+T
— ElseIf X>L6+L7 Then
T=0.5* (Q6+Q7) *L7
N5=N5+T : N7=N7+T
.- End If
— End If
'—— Next I
[N5=D*N5 : N7=D*N7]
—— End Sub
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Fig.4e

The distributed loads.

For I=1 To NQA(P)

06=066 (P, I) : L6=L66(P,I)
Q7=Q77(P,I) : L7=L77(P,I)
Fig.da.

Is X<=L6 then N5 and N7 do not change because
the distributed loads is applied '"just on the
right side' of the section.

Fig.4b en 4c.

When X is larger than L6, then N5 and N7 change
and one of the two possible calculations is
carried out. Therefore the first If-End ¥ with
If X>L6 Then.

The first possibility.

Fig.4b.

If X>L6 And X<=L6+L7 Then

A part of the distributed load, the trapezium
left of the section does change N5 and N7. For
that 08 is calculated.

With congruence of triangles follows

a/(Q7-06)=(X-L6) /L7 from which follows
a=(Q7-Q6) * (X-L6) /L7 so that
08=06+ (Q7-06) * (X-L6) /L7.

The to the right directed resultant T of the
distributed load left of the section is equal
the area of the concerning trapezium.

T=0.5% (06+Q8) * (X-L6) N5 and N7 change with

N5=N5+T : N7=N7+T.

The second possibility.

Fig.dc.

Elself X>L6+L7 Then

Now the total distributed load is on the left
side of the section. Resultant T then becomes

T=0.5* (Q6+Q7)*L7 and also now follows

N5=N5+T : N7=N7+T. And then

Next I for the following distributed load.

(With the assumed directions for N5 and N7
follows that they are compressfn~forces. If af-
ter calculation of N5 the answer bositiv, then
the assumption was correct so the force is a
compression force. The same applies for N7.
Saying before a calculation that a compression
force is 'negativ', is premature.

But if one wants as result of the calculation
shown here a 'negative' answer when it concerns
a compression force, then it is possible, but
now and not earlier. When one writes before the
calling of this subroutine D=-1, and after

Next T N5=D*N5 : N7=D*N7, only then a nega-
tive answer means that the force is a compres-
sion force.

Or... adjust the assumptions, N5 and N7 pull at
the section, then with opposite direction, not!
L-H as the member axis....., and then adjust the
code for calculations..... One may do so.)
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Private Sub N5G ()

'Calculation of the normal forces

'every G meter.

L=LL (P) H=HH (P)
D1=X1 (H)-X1(L) L1=Sqr(D1"2)
NA=0 (or L1=L11(P})

For XG=0 To L1+G Step G

- If XG=0 Then

X=XG :
NA=NA+1 : LA(P,NA)=X

NAL (P,NA)=N5 : NAR(P,NA)=N7
ElselIf XG>0 And XG<=L1l Then
Cl=1

For Il=1 To NFA(P)
L5=L55(P,I1)

If L5>XG-G And L5<=XG Then
X=L5 NSXX

NA=NA+1 : LA(P,NA)=X
NAL(P,NA)=NS : NAR(P,NA)=N7
If L5=XG Then Cl=0

N5XX page

End If
- Next Il
If Cl=1 Then
X=XG : N5XX
NA=NA+1 LA (P,NA)=X
NAL (P,NA)=N5 : NAR(P,NA)=N7
End If

Elself XG>L1 Then
For Il=1 To NFA(P)

L5=L55(P, I1)

If L5>XG-G And L5<L1 Then
X=L5 : N5XX

NA=NA+1 LA(P,NA)=X

NAL{(P,NA)=N5 : NAR(P,NA)=N7
End If

Next Il

If XG-G<L1l Then

X=L1 : N5XX

NA=NA+1 :LA(P,NA)=X

NAL (P,NA)=N5 : NAR(P,NA)=N7
End If

End If

Next ¥XG : NAC(P)=NA

End Sub

2 @ 3 G 3 B

: M —

: £/ ;
Fi5.3

1.11. Private Sub N5G()

Calculation of the normal forces in successive
sections each G meter, and at the places of the
concentrated loads.

Fig.1.

The number of sections is counted with NA which
will be stored at the end with NAC(P)=NA. To
begin with NA=O0.

Member length is L1=L11(P), or calculated.

For XG=0 To L1+G Step G

With subroutine N5XX are calculated at distance
X from member end L,

normal force N5 left of the section,
normal force N7 right of the section.
First the calculation for XG=0.

and

If XG=0 Then
First becomes X=XG and then follows subroutine

N5XX.

NA increases with 1 with NA=NA+1=0+1=1 and dis-
tance X is stored with LA(P,NA)=X.

N5 and N7 are kept with

NAL (P,NA)=N5 : NAR(P,NA)=NT7.

(Or start values at member end L with X=0 and
N5XX, NAL(P,NA)=BN and NAR(P,NA)=BN.)

Fig.2 and fig.1l.

ElseIf XG>0 And XG<=L1l Then

With Cl=1 it is assumed that there's no load
force F5 with distance L5=XG.

Then for all loads Il=t To NFA(P) is checked if
there is a load force after section C up to and
including section D with

If L5>XG-G And L5<=XG.

If a load force is found then X=L5 and the
normal forces N5 and N7 are calculated with
subroutine N5XX.

For Il= and not For I= because I is used in
subroutine N5XX.

I1f case L5=XG Then Cl=0 which means that for
that section a calculation is carried out, thus
a second calculation omitting. If Cl stays Cl=1
then for that section follows after Next Il
the calculation of the concerning N5 and N7 for
X=XG.

Fig.3.

ElseIf XG>L1 Then

The last part of the member is checked, again
For Il=1 To NFA(P) and then

If L5>XG-G And L5<L1.

At distance L1, the member end, will not act a
concentrated load but on the connected joint
can act a joint load force.

Again all member load forces are checked and
when L5 satisfies If-And-Then then X=L5 and
follows again N5XX.

After Next Il another check If XG-G<L1l Then.
If so then X=L1 and again N5XX.

After Next XG the total number of sections
NAC(P)=NA and finally

End Sub.

/9
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Private Sub CONSTRMATCCAXMEMBER

N=N9

For I=1 To N For J=1 To N
CC({I,J)=0 : Next J : Next I

FOR P=1 To P9 L=LL (P) H=HH (P)
EA=EAA (P)

MEMBERMATSS5AXMEMBER

TT(1)=L TT (2)=H

For I=1 To 2 I1=TT (1)

For J=1 To 2 J1=TT (J)

CC(I1,J1)=CC{I1,J1)+S5(I1,J)
Next J

Next I
Next P
End Sub.
2 3 4 5 1 2 3 4 5
X X X
X X
cC

after member 2

after member 4

1.12., Private Sub CONSTRMATCCAXMEMBER ()

Fig.1l.

The construction consists of P9=4 members and
N9=5 joints. There is 1 displacement for each
joint, the number of equations then is N=N9.
The dimensions of construction stiffness matrix
CC are N x N. First all elements of CC are set
Zero.

For I=1 To N For J=1 To N

CC(I,J)=0 : Next J : Next I

For each member P=1 up to and including P9 is
the lowest member end number L=LL(P) and

the highest member end number H=HH({P), and the
strain stiffnes is EA=EAA(P).

With the subroutine

MEMBERMATSS5AXMEMBER (see next page)

for a member member stiffness matrix S5 is fil-
led, which will be put in matrix CC after that,
first the first row with I=1 and next the
second row with I=2.

With I1=TT (1) the row number of matrix CC, and
with J1=TT(2) the column number of CC is deter-
mined.

TT(1l)=L TT (2)=H

With CC(I1,J1)=CC(I1,J1)+S5(1,J) the elements
of matrix CC are formed.

The new value CC(I1,Jl) is equal the 'old' pre-—
ceding value of CC(Il1l,Jl) added with the value
S5(1,d).

On the left the matrices S5 of the 4 members
are given of which the elements are indicated
with row and column numbers of matrix C.

For member P=1 with L=LL(1)=1 and H=HH(1l)=2

follow

TT(1)=L=1 and TT(2)=H=2.
The first row of S5 to C.
I=1 I1=TT(I)=TT(1)=1

J=1 J1=TT(J)=TT (1)=1 cc(1,1)= O +35(1,1)
J=2 J1=TT (J)=TT (2)=2 cc(1,2)= 0 +35(1,2)
The second row of S5 to C.

1=2 I1=TT(I1)=TT(2)=2

J=1 J1=TT(J)=TT(1)=1 cc(z2,1)= 0 +85(2,1)
J=2 J1=TT (J)=TT(2)=2 cc(2,2)= O +55(2,2)

For member P=2 with L=LL(2)=2 and H=HH(2)=3
follow

TT(1l)=L=2 and TT(2)=H=3.

The first row of S5 to C.

I=1 I1=TT(1)=2

J=1 J1=TT (1)=2 CC(2,2)=CC(2,2)+85(1,1)
J=2 J1=TT (2)=3 CC(2,3)= 0 +55(1,2)
S5(2,2) of member 1 coincides with S5(1,1) of
member 2.

The second row of S5 to C.
I=2 I1=TT(2)=3
J=1 J1=TT(1)=2
J=2 J1=TT(2)=3
And so on.

Three times two elements of S5's coincide on
the main diagonal of matrix CC.

CC(3,2)= 0
CC(3,3)= 0

+5$5(2,1)
+S55(2,2)
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member 3 member 4
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1 X X .
2
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|
5 X X
cC

after menber 1

after member 2

1
2 X
3 .
4 X X X
5 - X X .
after member 3 after member 4
- Private Sub MEMBERMATS5AXMEMBER ()
D1=X1 (H)-X1 (L)
L1=8qgr (D1"2)
R=EA/L1
S5(1,1)=R : S5(1,2)=-R
55(2,1)=-R : 85(2,2)=R
L End Sub
VA A
—_— —_— ———
FLpk ELLX
FLHX R -R UHL
FHLX -R R UHH
55 Fig.3.

Fig.2.

Suppose that the numbering of the joints is a
bit irregular as shown on the left, then the
construction matrix CC will look different.
Here below row and column numbers are give for
each member.

P L TT(1) H TT(2)
1 1 1 3 3
2 3 3 5 5
3 4 4 5 5
4 2 2 4 4

In the four member matrices S5 the elements are
indicated with row numbers Il and column num-
bers Jl of matrix CC.

Member 1 with row and column numbers 1 and 3.
Matrix S5 is placed in C.

CC(l,1)= 0 +85(1,1) CcC(1,3)= 0 +S585(1,2)
CC(3,1)= 0 +585(2,1) CC(3,3)= 0 +585(2,2)
Member 2 with row and column numbers 3 and 5.
Matrix S5 of member two is placed in CC.
CC(3,3)=CC(3,3)+S5(1,1) CC(3,5)= 0 +S5(1,2)
CC(5,3)= 0 +85(2,1) CC(5,5)= 0 +S5(2,2)
Member 3 with row and column numbers 4 and 5.
CC(4,4)= 0 +S5(1,1) cCC(4,5)= 0 +55(1,2)
CC(5,4)= 0 +55(2,1) CC({5,5)=CC(5,5)+585(2,2)

row and column numbers 2 and 4.
+35(1,1) CC(2,4)= 0 +85(1,2)
+S85(2,1) CC(4,4)=CC{4,4)+85(2,2)

Member 4 with
CC(2,2)= 0
CC(4,2)= 0

the third, fifth and fourth dia-
change two times.

The values of
gonal element

The elements of the main diagonals of the mem-
ber matrices S5 arrive on the main diagonal of
matrix CC. When the last matrix S5 has been
placed in CC all elements on the main diagonal
have become unequal to zero.

(With continuous beams, and frames, it is pos-
sible that there are still zeros on the main
diagonal after construction matrx CC has been
composed) L+ pFags

Elements left and right of the main diagonals
of the matrices S5 arrive at places outside the
main diagonal of CC and never coincide.

Next the subroutine with which the member
stiffness matrices S5 are filled.

1.13. Private Sub MEMBERMATSS5AXMEMBER ()

Fig.3.

D1=X1(H)-X1(L) is the member length which can
be negative, the case for member 4. Thderefore
member length L1 is calculated with
L1=Sqr(D1~2).

The elements of member stiffness matrix S5 are
the stiffness factors R=EA/L with a + or - sign
as given on the left, see page 2
$5(2,1)=-R 85(22)=R

$5(1,1)=R $5(1,2)==R

End Sub

2/
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Private Sub AXMAINCALC()

'l.Composition of construction ma-
'trix CC with member matrices S§5.

CONSTRMATCCAXMEMBER

'2. Elements of force vector FF.

'2a. Joint load forces FX(I).
N=1*N9
- For I=1 To N9
A=1*T
FF(A)=FX(I)
PP(A)=PH(I)
UU (A)=UH(I)
SS(A)=8SH (I)
Next I
. ]
L ﬁ_z —= :— “,  Aa
x B2
Fro.2a.

Fxz) ~t)

i e
D2CRY) DEIR 2)
PRl L [’_':j F7(R2)

Firs 24

'2b. Primary forces due to member
'loads along the member axis.

'staafas.
— For P=1 TO P9 L=LL (P) H=HH (P)
EA=EAL (P)
D1=X1 (H)-X1(L)
L1=Sgr(D1"2) L11(P)=L1
C=D1/L1
MEMBER (reactions N1 and N2)
D7 (P,1)=N1*C D7 (P, 2)=N2*C
— Next P

1.14. Private Sub AXMAINCALC()

With this subroutine the main calculation is
carried out for axial loaded members with coin-

ciding axes.
The first step is the subroutine

1. CONSTRMATCCAXMEMBER (see page 20 )

with which construction stiffness matrix CC is
formed by using the member stiffness matrices
S5.

2. The elements of force vector FF.
2a. The joint load forces.

Fig.1.

There are N9 joints. There is one possible dis-
placement UH(I) for each joint I, thus the
number of equations is N=1*N9.

First for each joint are put in

The joint load forces FX(I),

PH(I)=1 if the displacement is prescribed,
PH(I)=0 if that is not the case,

the prescribed displacement UH(I), and

UH(I)=0 if it is not prescribed, and

the spring constants with SH(I) and SH(I)=0 if
that does not apply.

They are placed in total vectors FF, PP, UU and
SS with A=1*I.

(Trusses can have two joint load forces, FX(I)
and FY(I), and two displacements per joint,
UH(I) and UV(I), etc. In that case A=2*I.

Here FF and FX etc. have the same size.

2b. Primary forces due to loads parallel to the
member axis.

Fig.2a.

For each member P=1 To P9 the strain stiffness
is EA=EAA(P). With D1=X1(H)-X1(L) are first
calculated L1=Sqr(D1”2) and C=D1l/L1l.

With the subroutine
MEMBER (see page [f)
N2 are calculated.

the reactions N1 and

Fig.2b.

The assumptions for the directions of the on
the joints acting primary forces D7(P,1) on
joint L and D7(P,2) on joint H is to the right,
the same as that of the joint load forces
FX(I).

On the member ends act forces as large as but
opposite directed forces, so to the left.

The directions of the on the ember ends acting
forces N1 and D7(P,1), and N2 and D7 (P,2) are
the same. So one can write

D7{P,1)=N1*C D7 (P,2)=N2*C.

And then similar for each member.

Next P
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'2c.BAlteration Of force vector FF.
For I=1 To N9
A=1*T

For P=1 To P9 L=LL(P) H=HH (P)
If I=L Then
FF(A)=FF(A)+D7 (P, 1)
Elself I=H Then
FF(A)=FF(A)+D7 (P, 2)
End If
Next P
Next I
2 K4 s g
| ! 1 1 J
1 2 3 4 5 Fig.4.
. CC(1,4) FF (1)
. . CC(K,I). 5 FF (K)
. UuU (4)
= CC(5,4)
ccC uuU FF

[ For J=1 To N

'3. Alteration of force vector FF
'and construction matrix CC.

*3a. Of FF in case of prescribed
'displacements <>0.

For I=1 To N

If UU(I)<>0 Then

For K=1 To N

FF (K)=FF(K)-CC(K,I)*UU(I)

Next K

End If

Next I

o OO0

0 uu (4) FF (4)
Fig.5.

'3b. Of FF and CC in case of pres-
'cribed displacements.

For I=1 To N

If PP(I)=1 Then

CC(I,J)=0 CC(J,I)=0

Next J

CC(I,I)=1 FF(I)=UU0(1I)

End If

Next I

'*3c. Of CC in case of elastic/

'springy supports.
For I=1 To N

If SS(I)>0 Then _
CC(I,I)=CC(I,I)+SS(I)
Next I

2c. Alteration of force vector FF.

Fig.3.

For each joint I the primary forces D7(P,1) and
D7(P,2) are added to an element of FF. The ele-
ment number is A=1*I.

For each joint I all members are checked if
they deliver a primary force on the joint. (All
members, not necessary, but of more importance
when dealing with trusses.)

If I=L then becomes

FF(A)=FF (A)+D7 (P,1) and

if I=H then becomes

FF(A)=FF(A)+D7(P,2).

After the last member P9 is checked follows the
next joint with

Next I.

3. Alteration of force vector FF and construc-—
tion matrix CC.

3a. Of FF in case of prescribed displacements
unequal to zero, <>0.

Fig.4.

For that the total vectors UU and FF are used...
because it will be done the same way with other
constructions.

If for I=4 displacement UU(4)<>0 is prescribed,
then PP(4)=1 was put in, then each element

FF(K) must be lessened with

CC(K,I)*UU(I), so here with CC(K,4)*UU(4) for
K=1 To N.
K=1 FF(1)=FF(1)-CC(1,4)*UU(4)

K=2 FF(2)=FF(2)-CC(2,4)*0U(4)
K=3 FF(3)=FF(3)-CC(3,4)*UU(4)
K=4 FF(4)=FF(4)-CC(4,4)*UU(4)
K=5 FF(5)=FF(5)-CC(5,4)*0U (4)

3b. Of FF and CC in case of prescribed displa-
cements.

Fig.5.

If PP(I)=1 then displacement UU(I) is pres-
cribed.

If PP(4)=1 then the fourth row and the fourth
column of matrix CC are filled with zeros.

For I=1 To N and For J=1 To N then follow

CC(I,J)=0 CC(J,I)=0.
I=4 J=1 CC(4,1)=0 CC(1,4)=0
J=2 CC(4,2)=0 CC(2,4)=0
J=3 CcC(4,3)=0 CC(3,4)=0
J=4 CC(4,4)=0 CC(4,4)=0 (that's
two times, but does not matter)
J=5 CC(4,5)=0 CC(5,4)=0

After that the element on the main diagonal is
made CC(I,I)=1, so for I=4 with CC(4,4)=1, and
the fourth element FF(4)m of FF gets the value
of the prescribed displacement, zero or not
zero,
FF(I)=UU(I), here FF(4)=0U(4).

3c. Of CC in case of elastic/springy supports.
If SS(I)>0 then SH(I) is the spring constant
put in which must be added to the concerning
element CC(I,I) of the main diagonal.

If SS(I)>0 Then CC(I,I)=CC(I,I)+3S(I)

Now the set of N=1*N9 equations got ready to be
solved.
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'4. Calculation of the unknown

'displacements UH(I).
— For I=1 To N BB (I)=FF(I)
For J=1 To N
[iAA(I,J)=CC(I,J)
Next J
~ Next T Ax=Db is Cu=1%
1 L] . .
2 | UU(A) UH(2) XX (A)
3 2 3
4
5
uu UH XX
'The solution of the N=1*N9
'equations.
GAUSS
— For I=1 To N9
A=1*T
UH(I)=XX(A)
UU (A)=XX{A)
- Next I
'5. Calculation of the memberend
'forces w.r.t. construction axis X.
'5a. Due to the displacements
'alone.
KLix_ L g THLX
| —_— — i
FKB)) FR(P2)
- _ _
FLHX R -R UH (L)
FHLX -R R UH (H)
} | 1L
£ 55 u
N 11
FK(P,1) (1,1) (1,2) Uvu (A)
FK(P, 2) (2,1) (2,2) UU (A)
L _| 4 L
’ 2 3 9 g
L | | . 1 _
) % 3 07
Fig.6a.
— For P=1 To P9 L=LL(P) H=HH (P)
EA=EAA (P)
MEMBERMATSS5AXMEMBER
TT(1)=1*L
TT (2)=1*H
For I=1 TO 2 FK(P,I)=0

FK(P,I)=FK(P,I)+S5(I,J)*UU(A)
Next J

Next I

'5pb. Due to displacements and mem-—
'ber loads along the member axis.
D5(P,1)=FK(P,1)~-D7(P, 1)
D5(P,2)=FK(P,2)-D7(P,2)

D1=X1 (H)-X1(L)

L1=8qr (D1~2)

C=D1/L1

NAA(P,1)=D5(P,1)*C

NAA (P, 2)=D5(P,2)*C

—— Next P

[ For J=1 TO 2 : A=TT(J)

4. Calculation of the unknown displacements
UH(I).

In behalf of the vector BB and matrix AR used
in the subroutine GAUSS

vector BB is filled with the elements of force
vector FF, and

matrix AA with the elements of construction
matrix CC.

4a. The solution of N eqguations.

With the subroune GAUSS the unknowns of vector
XX, is x, solved and placed in UH(I) and UU(A).
{remark A ]

5. Calculation of the member end forces w.r.t.
the construction axis X.

5a. Due to the displacements alone.

Fig.6a.

The relation between member end forces and dis-
placements is f = S5 u.

For each member the stress stiffness is
EA=EARA (P) .

With the subroutine

MEMBERMAT S5AXMEMBER (page 2/ )

member matrix S5 is formed.

Member end force FK(P,I) is equal row I of 85
times column u.

With TT(1) and TT(2) the elements of u are got-
ten from total vector/column UU.

For member P=2 is L=2 and H=3.
TT(1l)=1*L=2 and TT(2)=1*H=3.
I=1 A=TT (J) FK(P,I)=FK{(2,1)=0

J=1 A=TT(1)=2 FK(2,1)= 0 S5(1,1)*UU(2)
J=2  A=TT(2)=3 FK(2,1)=FK(2,1)+S5(1,2)*UU(3)
=2 FK (P, I)=FK(2,2)=0

J=1 A=2 FK(2,2)= 0  +85(2,1)*UU(2)
J=2  A=3 FK(2,2)=FK(2,2)+S5(2,2) *UU (3)

(Or with R=EA/Ll1, FK(P,1l)= R*UH{L)-R*UH(H) and
FK(P,2)=-R*UH(L)+R*UH (H) .)

Sb. Due to displacements and member loads alég
the member axis.

7R 4 e | | # @i/ﬁﬂ
—p=
NAACR) NAACR2)
2577)) 2822
Fig.6b.

The on the joints acting primary forces D7(P,1)
and D7(P,2) are assumed to the right; then on
the member ends to the left directed.

The final member end forces

D5(P,1) at member end L and

D5(P,2) at member end H, are assume to be
directed to the right. Then follow

D5 (P,1y=FK(F,1)-D7(P,1) and
D5(P,2)=FK(P,2)-D7(P,2).

The final member end forces w.r.t. member axis
x, NAA(P,1) and NAA(P,2) are directed according
to the member axis, ~-z 3 . = .

With D1=X1(H)-X1(L) , L1=SQR(D1A2) and C=D1/L1
then follow

NAA(P,1)=D5(P,1)*C and NAA(P,2)=D5(P,2)*C.
And then the foloowing member with

Next P.
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'6. Calculation of the joint for-

‘ces KH(I).
'6a. Due to the displacements
'alone.
FI2X 7 2 Flx
Kb(z)

el g
ik 2 Fazk
2 3 F3ax

£23%
/g Fa.
1 . UU (1)
2 v > : uu(2)
3 | KH{3)| = .CCc(a,J)
4
5 &
: cc [818)
CONSTRMATCCAXMEMBER
—— For I=1 To N9
A=1*T
KH(I)=0
For J=1 To N
l: KH(I)=KH(I)+CC(A,J)*UU(J)
Next J
KH() Lare)
4 - L
DZc71) 27/P2)
Fo. 7.

'6b. Due to the displacements and

'member loads along the member

'axis.

For P=1 To P9

If I=L Then

KH(I)=KH(I)-D7(P,1)

ElselIf I=H Then

KH(I)=KH(I)-D7(P,2)
—~ End If

Next P

Next I

L=LL(P) H=HH(P)

IVV\NWLM?! Fj’fai‘
=MW

'7. Calculation of the reactions.
For I=1 To N9

If SH(I)>0 Then
RH(I)=-SH(I)*UH(I)

Else

RH(I)=KH(I)-FX(I)

End If

Next I

—— End Sub

e S
RHra) 7 ko)
7.8,

6. Calculation of the joint forces KH(I).
6a. Due to the displacements alone.

Fig.7a.

The on the joint acting 'joint force' KH(I),
assumed to be directed to the left is equal
one! force on the joint to the left acting mem-
ber end force, or is equal

the sum of the on the joint to the left acting
member end forces. (see page )

To calculate the joint forces the original, not
altered construction matrix CC is used.
Therefore first the subroutine
CONSTRMATCCAXMEMBER

For I=1 To N9

Joint force KH(I) is equal a row A=1*I of ma-
trix CC times column UU.

If I=3 Then A=1*3=3, before KH(3)=0.

J=1 KH(3)= 0 +CC(3,1)*0U(1)
J=2 KH(3)=KH(3)+CC(3,2)*0U0(2)
J=3 KH(3)=KH(3)+CC (3, 3)*UU(3)
J=4 KH(3)=KH(3)+CC(3,4)*UU(4)
J=5 KH(3)=KH(3)+CC(3,5) *UU(5)

6b. Due to the displacements and member loads
along the member axis.

Fig.7b.

The member loads deliver the primary forces
D7(P,1) at L and D7(P,2) at H.

For a joint I all (not necessary here, but see
trusses page ;) the P=1 To P9 members are
checked to see if a member delivers a primary
force on that joint. That's the case if joint
number I equals member end number L or member
end number H.

The on the joints acting primary forces are as
the joint load forces assumed to be directed to
the right.

If I=L then becomes

KH(I)=KH(I)-D7(P,1l) and

if I=H then becomes

KH(I)=KH(I)-D7(P,2).

After the last member follows the next joint,
Next I.

7. Calculation of the reactions.

Fig.8.

The reactions RH(I) are as assumed for the
joint load forces FX(I) directed to the right.

Is the joint elastic supported then the spring
constant is SH(I)>0. Is the displacement UH(I)
assumed to the right, the spring reaction beco-
mes

VKH=SH (I)*UH(I) to the left, so that
RH(I)=-SH(I)*UH(I).

In all other cases is

RH(I)=KH(I)-FX(I).

Finally the end of the main calculation with

End Sub.
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Program AXPROGRAM222 assumptions.

/ I_;f§33257 2 Continuous members. Torsion not included.
-;ﬁvr—’t_ P=y S Fig.1
Yo xs¢7) ig.1l.
FLy)
J 2 3, Joint assumptions.
pr - » F:!:l ”A}’-Px P=2 >
r Ly T FX PH UH SH X1
9./
I Jjoint number
FX(I) horizontal joint load force
The 'member axis system’ l X is always PH(I)=0
7 joint displacement UH(I) not prescribed
placed at the lowest member end number PH(I)=1
joint displacement UH(I) is prescribed
UH(I)=0 or <>0
SF7R
@“ﬂ?"j 77{“7 UH(I) in EA (EA is strain stiffness)
Eﬁﬁﬁiy a horizontal displacement
- A — . 4’5 SH(I) horizontal spring constant in EA
4 % ¥ X1(I) distance from left end in m
b : h
} [53?292j _ RH(I) reaction to the right
} L&6(27) ] 4’277//?‘7/4__ Member assumptions.
L L/ .
i . /5 LL HH Al NFA NQA
page
Fig.2. P member number
LL(P) lowest member end number
The assumed direction of the load for- HH (P) highest member end number

ces like the x-axis (just a name)of the
member axis system.
Reactions N1 and N2.assumed in opposite

NFA (P) number of horizontal member load forces.

NQA (P) number of horizontal distributed member

direction.
load forces.
& nphr $ &y /om
¥ &L 31
1 =y I8 P22 IF4 F A= R /64 x P-3  1EA }
A dm 2 L m . B
Fig.4. Fig.3.
Member axis system J * at lowest!! member With member loads, no joint loads.
end number. ¥
N9=3 Jjoints N9=3 joints
I FX PH UH SH X1 I FX PH UH SH X1
1 0 1 0 0 10 1 0 1 0 0 0
2 0 0 0 0 5 2 0 0 0 0 5
3 0 1 0 0 0 3 0 1 0 0 10
P9=2 members P9=2 members
P LL HH Al NFA NOA P LL HH Al NFA NQA
1 2 3 1 0 1 1 1 2 1 0 1
I Q6 Q7 L6 L7 I Q6 Q7 L6 L7
1 -5 0 2 3 1 0 5 0 3
2 1 2 1 1 0 2 2 3 1 1 0
I E5 L5 I F5 L5
1 8 2 1 -8 3
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—s AXPROGRAM222, the form controls.

normal force diagram EXS5 Number of joints N9=, text box TN9.
2.39 3, 32 Number of members P9=, text box TP9.
l _._.. 2 —_—— 3
= 1 3 TSTRING is the large text box for input of
fy IL =~ joint and member data. After input of those
) data press Enter or click OK.
Shw= -2.37 red ool = 1 Click Show after all data put in to appear on
- 5'68 %= 0'00 P= the form, page 34, and disappear when clicking
NSHM!X: ! { m P=2 Calculate to carry out the calculations.
= 5,68 X=0,00m P=2 Click Cls to clear the form.

kN

kN

kN

KN NAR(2,1)= 2,32 kN Next click DRAWNS to print the normal force
XN NAA(3,2)= 3,32 kN diagram, compression below the zero line and
tension above the zero line.

kN
kN
kN

RH(l)= -2,32 UH(1l)= 0,00 /EA NMAX for each member P.
RH(2)= 0,00 UH(2)= 4,64 /EA NGMAXX is the largest of all NMAX.
RH(3)= 3,32 UH{3)= -~0,55 /EA .
Fig.4a.
Assumed direction of member end forces
CSE=0 Results Reactions Show Again from lowest member end number L

to highest member end number H,

No=[ " | oK | Cls
Po=[" G5 NSN7StepG | AlOverAgan| NAA(P,1) and NAA(P,2), page 24,

y ,——j ) printed as NAA(H,L) and NAA(H,L).

P DﬂAWNSl Calculate STORE NR=? GET {(NAA (P, 1) determines '"compression' or ‘'tension'

8EXAMPLES EX1 EX2 EX3 EX4 EX5 EX6 End] according to made assumption.)

Waalp,q) 2 2 4 2 MM
LA

0| Ql v | 3!
7 T 2 -4

F" 2m 5— Sm i 2,32 2.2 4N

T 9 ' ¢ ———— N —

=g gt M

Fig 46. LAAL2.3) 2 3, VAl (o]
Type in TG 1.8 and click N5EN7 Step G, ly_'-‘ j

i A
' results here below. See page 30. 565 gL 3,33

member 1 1"9-‘/“-

X=0,00 m NS= -2,32 KN N7/= -2,32 kN Thus is assumed that NAA(P,1) pushes at member
¥= 1,80 m = ~-2,32 ¥N N7= -2,32 kN end L, and NAA(P,2) pulls at member end H.

X= 2,00 m N5= -2,32 N =-2,32 XN

r 2 Szizlzl?frzfl'z 32 kN ti th

X= 0.00 m N5= o _ ,2)= -2, , negative answer, so e

2= 1'80 m N5= :'2; g :;;_ :'gg g real direction of member end force NAA(L,H) is

_ ' N5= ' - ' not to the right as assumed, but to the left.
%= 3,00 m N5= 5,68 N N7= -3,32 xiV NAA(2,1)= 2,32 kN, positive answer, so the

X= 3,60 m NS= -3,32 kN N7= -3,32 kN real direction of member end force NARA(H,L) is
X= 5,00 m N5= -3,32 KN N7= -3,32 XN to the right as assumed.

p 3 . ?‘irz Member P=2. o .
Fr; —— NAA(2,3)= 5,86 kN, positive answer, directed
yr g ¢ S 4 as assumed, NBA(3,2)= 3,32 kN, positive answer

so directed as assumed.

Reactions assumed direction to the right.
RH(1)= -2,32 kN, real direction to the left.

All Over Again To start position. RH(2)=0, no reaction.
HR(3)= 3,32 kN, real direction to the right.

Again All UH(I) set zero.

STORE NR= GET
Storing data put in, page 28.

Joint displacemernts, assumed to the right.

UH(1l)= 0 /EA

CSE=0 click to CSE=1, to put in sepa- UH(2)= 4,64/ ER, that's to the right.

rate input values, page 31. Joint 3 is horizontally supported by a spring,
SH(3)= 6,0 EA, page 34.

PrF to print the screen form. UR(3)= -0,55 /EA, that's to the left
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normal force diagram

1 h:::::ﬁrm\\“ 2

[ === =
e
y
NMAX= -8,46 kN X¥= 3,51 m P= 1
NSMAXX= -8,46 kN X= 3,51 m P= 1
NAA(1,2)= 2,50 ¥N NAA(2,1)= -1,50 kN
RH(l)= 2,50 kN UH(1)= 0,00 /EA
RH(2)= -1,50 kN UH(2)= 0,00 /EA
I FX PH UH SH X1
1 0 1 0 0 0
2 0 1 0 0 6,00
P L H Al NFA ©NOA
11 2 12,0 1 1
I F5 IS
1-11,0 3,50
I Q6 Q7 L6 L7
1 4,0 4,0 3,50 2,50

Results Reactions Show
No={2 | 0K | cs
Po=1" G|~ N5N7StepG | AllDverAgain |
| PrFF [DRAWNS| Calculste | STORE NR=? GET

8EXAMPLES EX1 EX2 EX3 EX4 EX5 EX6 Endl.

:The member axis system
‘end number.

AQéﬂ 4

——
7z 12 EA 2
| 2,55 }

Example,

& LAY
4£:§ =2 /2 EA ;
i X7
. 3,5m . 25 .

Fig.5.

%2 at the lowest member

The assumed direction of the member loads is
that of x of the member axis system.

" Input of jeoint, member and member load data,
' see them on the left.

N9=2 supports/joints.
Type 2 in text box TN9, Tab, cursor in TSTRING

and type
1,0,1,0,0,0 Enter and 2,0,1,0,0,6 Enter,
cursor appears in text box TP9.

PS5=1 member,
Type 1 in text box TP9, Tab, cursor in TSTRING

| and type

1,1,2,12,1,1 Enter

followed by the load force 11 kN with
1,-11,3.5 Enter

and the distributed load with
1,4,4,3.5,2.5 Enter.

Click Show to see the data put in.

Click Calculate to carry out the calculation,
first data shown disappears,

DRAWNS to draw the normal force diagram,
appear maximum values,

Results for the member end forces NAA(L,H) -and
NAA(H,L), and

Reactions for support reactions RH(1l) and RH(2)
and joint displacements UH(1l) and UH(2).

also

Fig.6.

Member axis system at the other member end,

Fig.6.

normal force diagram

2' — b e— l
o |
1 —_——
NMA¥X= -8,50 KN X=2,50m P=1
NSMAXX= -8,50 kN X=2,50m P=1
NAA(l,2)= 1,50 ¥N NAA(2,1)= -2,50 kN
RH(l)= -1,50 kN UH(l)= 0,00 /EA
RH(2)= 2,50 kN UH(2)= 0,00 /EA

must have the lowest member end number, so 1 at
the right end and 2 at the left end.

N9=2 supports/joints.
Type 2 in text box TN9, Tab, cursor in TSTRING

and type
i,0,1,0,0,6 Enter and 2,0,1,0,0,0 Enter,

cursor appears in text box TPSY.

P9=1 member.

Type 1 in text box TP9, Tab, cursor in TSTRING
and type

1,1,2,12,1,1 Enter

followed by the load force 11 kN with

1,11,2.5 Enter

and the distributed load with

1,-4,-4,0,2.5 Enter. Etc.

To compare with he data input here above.

The normal force diagram is mirrorred.

Now above the member compression and below the
member line tension.
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Example.

normal force diagram

4
D g

38, 50 :JI./
g Py /€4 X L0 ik
L == 2 = — o ! 25m
2,50 450
Fig.7.

= 0,00m P=1
= 0,00m P=2
¥=0,00m P= 2

NMAX= 2,50 kN
NMAX= -8,50 kN
NSMAXX= -8,50 kN

N9=3 joints. Supports 1 and 3.

Type 3 in text box TN9, Tab, cursor in TSTRING
and type

1,0,1,0,0,0 Enter, 2,-11,0,0,0,3.5 Enter,
3,0,1,0,0,6 Enter,

cursor appears in text box TP9.

NAA(l,2)= 2,50 KN NAA(2,1)= -2,50 kN
NAA(2,3)= -8,50 KN NAA(3,2)= -1,50 kN

RH(1)= 2,50 kN UH(l)= 0,00 /EA P9=2 members.
RH(2)= 0,00 kN UH(2)= -0,73 /EA Type 2 in text box TP9, Tab, cursor in TSTRING
RH(3)= -1,50 kN UH(3)= 0,00 ¢/EA[ 2and type
1,1,2,12,0,0 Enter and 2,2,3,12,0,1 Enter,
and the distributed load with
i Fg P? Ug Sg Xé 2,4,4,0,2.5 Enter.
Click Show to check the input.
2 -11,0 ¢ -0,7 0 3,50
3 0 1 0 0 6,00 Storing the data.
Click NR= to e.g. NR=2 if not underlined and
P L H Al NFA NQA click STORE gets STORE and NR=2 as well.
1 1 2 12,0 a 0 Numbering NR= up with left mouse button and
numbering down with right mouse button, maxi-
P L H Al ©NFA NOA mum R=10.
2 2 3 12,0 0 1 Wanting the stored data back, click to the un-
I 06 07 16 L7 derlined NR=2, click GET gets underlined and
1 4.0 4.0 0 2.50 Show. Remove the data, click with right mouse
' B ' button on GET, underlinig disappears, of NR=2
as well.

Click Calculate, DRAWNS, Results and Reactions
to get the print shown on the left.

/ 2
Hooke's law UH(I)= F*L/'EA' -
e NAALL2) / NAAL2,5)
ith 'EA' i &
Here wlt EA' is 12EA /4 4/_2
4) 2 2 50 #n 4 Lat/
rig o, NAL.3) g NAPL32)

Fig.8.
UH(2)= (2,50*3,50)/12EA= 0,73/EA to the
left, that is opposite to the assumed
direction, so UH(2)=-0,73/EI.

Member end forces NAA(L,H) and NAA(H,L) have
assumed directions from lowest to highest mem-

Ly Nz i ber end number.
| I 44 250 / 2 23D
“+—t I
E5ak y / :2 €4
L2 J2EA | 400 9 N
LJ ¢ 4
Fig.11. 2 3
&30 2 22g4 480

s

See formula page 45, Z= Q*L~2/2EA.

Fig.9.
(4*2,50%2)/(2*12EA)= 1,04/EA and
The member end forces drawn with their real di-
rections,

(8,50*2,50)/12EA= 1,77/EA,
At joint 2 act the member end forces as large

Assumed to the right,
UH(2)= 1,04/EA -~ 1,77/EA= -0,73/EA ok

as but opposite directed.
Momboro and jointe in ogquilibrium.
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Example.
normal force diagram 7 AN, /«99
2/00 &y
. ,80by Ao oo 2|z, 2 = Q*L~2/2EA
—_— 2 I p=s R /EA
% 1’ 4 ” e
bv* 6 i ~ien
—
NMAX= -21,00 KN X= 0,00 m P=1 Fig.12a.
NSMAXX= -21,00 ¥IN X=0,00m P=1
N9=2 joints. P9=1 member
NAZ (1 = _ = I FX PH UH S8SH X1 P L H Al NFA NOA
(1,2) 21,00 kN NAA(2,1) 0 I i1 0 1 0 0 O 11 2 1 0 1
2 0 0 0 0 3 I 6 7 L6 7
RH(1l)= -21,00 kN UH(1)= 0,00 /EA 1 Q7 Q7 0 L3
RH(2)= 0,00 kN UH(2)= 31,50 /EA| rType 2 in TN9, Tab, type in TSTRING
1,0,1,0,0,0 Enter and 2,0,0,0,0,3 Enter.
I FX PH U SH X1 Type 1 in TP9, Tab and type in TSTRING
1 0 1 0 0 0 1,1,2,1,0,1 Enter
2 0 0 31,5 0 3,00 and next in TSTRING 1,7,7,0,3 Enter.
Click Calculate, DRAWNS5, Results, Reactions and
P L H a1 NFA NOA Show to get the results shown on the left.
1 1 2 1.0 0 1 Normal force at 1.6 m from the left.
1 06 67 LE 17 Click in TG to get the cursor there and type
1.6 E # ick N7 Step G.
1 7,0 7,0 0 3,00 nter, and click N5 e
: member 1
— X= 0m NS= -2l KN N7= -21 kN
X=1,60m N5= -9,80 kKN N7= -9,80 kN
X= 3,00 m N5= 0 XN N7= 0 kN
normal force diagram
10,30 4a £/
| [ 2,29 ¥ ) Lo 2 z = Q*L"2/6EA
1 i 1
Fig.12b.
NMAY= -10,50 kN X=0,00m P=1 Joint data and member data the same.
NSMAXX= -10,50 kN X=0,00m P=1 The member load data 1,7,0,0,3 Entecx.
In TG 1.6 Enter, and click N5 N7 Step G.
NAA(l,2)= -10,50 kN NAA(2,1)= 0 kN member 1
X= 0,00 m N5=-10,50 kN N7=-10,50 kN
RE(1})= -10,50 kN UH(l)= 0,00 /EA = 1,60 m NS= -2,28 KN N7= -2,29 XN
_ _ . ’ :
RE(2)= 0,00 kN UH{2)= 10,50 /ER X= 3,00 m NS= 0,00 KN N7= 0,00 kN
__!_ 7 s
Y/ — .. .|2 z = Q*L"2/3EA
4
normal force diagram Fig.12c.
/0,50 kx)
=) ,5'-"11/ Joint data and member data the same.
1 e 2 The member load data 1,7,0,0,3 Enter.
} In TG 1.6 Enter.
1 member 1
X= 0,00 m N5=-10,50 kN N7=-10,50 kN
NMBX= -10,50 kN X= 0,00 m P=1 X= 1,60 m N5= -7,51 kN N7= -7,51 kN
NSMAX¥= -10,50 kN X=0,00m P=1 | X= 3,00 m N5= 0,00 kN N7= 0,00 kN
a) is b) + ¢c), for N5 -9,80= -2,29 +(-7,51)
NAR(1,2)= -10,50 KN NARA(2Z,1)= 0 kN That's correct, the figures don't show that.
Each time a diagram is drawn the larges normal
RH(1)= -10,50 kN UH{l)= 0,00 /EA force determines how the diagram looks like.
RE(2)= 0,00 XN UH(2)= 21,00 /EA Here the largest normal force in the diagram is
' ! aboul 0,75 .
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normal force diagram

2%

l —— |

2% 3

NMAX=
NSMAXX=

10,86 kN
10,26 kN

Nan(l,2)= -9,14 kN

1

/0,864
X= 5,01l m P=1
X=50lm P=1

NaA(2,1)= -10,86 kN

RH{l)= -%,14 kKN UH{1l)= 0,00 /EA
RH(2)= -10,86 kN UH({2)= 0,00 /EA
member 1
X= 0,00 m N5= -%,14 ¥N N7= -5,14 kN
X= 1,60 m NS= -9,14 ¥N N7= -9,14 kN
X= 2,00 m NS= -%,14 ¥N N7= -1,14 kN
¥= 3,20 m NS= -~1,14 XN N7= -1,14 kN
¥= 4,80 m NS5= -1,14 ¥N N7= -1,14 kN
X= 5,00 m N5= -1,14 kXN N7= 10,86 kN
X= 6,40 m N5= 10,86 KN N7= 10,86 kN
X= 7,00 m N5= 10,86 kN N7= 10,86 kN
I FX PH UH SH X1
1 0 1 0 0
2 0 1 0 7,00
P L H Al NFA  NQA
1 1 2 1,0 2 0
I F5 LS
1 8,0 2,00
2 12,0 5,00
normal force diagram
/8,88
1 -2
_— - - j /./f’
2.7y
NMAYX= -10,86 XN X=5,0lm P=1
NSMA¥X= -10,86 kN X= 5,0l m P=1

NAaR({l,2)= 9,14 kN

RH{1)=
RH(2)=

5,14 kN
10,86 kN
FX PH
0 1
0 1
H Al
2 1,0
F5 LS
,0 2,00
,0 5,00

NAR({2,1)= 10,36 kKN

UH(1)= 0,00 /EA
UH(2)= 0,00 /EA

UE SH Xl
0 0 0
0 0 7,00

Example,

" A Bin 8 {2 Ly
= P=s LEA F
7 2m 4 3 m A 2 —
Fig.13.
N9=2 joints. P9=1 member.
I FX PH UH SH X1 P 1L H Al NFA NQA
1 0 1 0 0 0 1 1 2 1 2 0
2 0 1 0 0 7 I F5 L5
1 8 2
2 12 5

In TNY9 type 2, Tab, in TSTRING
1,0,1,0,0,0 Enter, and 2,0,1,0,0,7 Enter,
in TPY9 type 1, Tab, and in TSTRING

2,1,2,0 Enter, the member loads with
2 Enter and 2,12,5 Enter.

Click Calculate, DRAWNS, Results and Reactions.

NADALND) ‘__d) r__z_z NAALS )
2.2 4] -7 L2 o 19.84
Fig.14,

The member with assumed direction of the member
end forces NAA(1l,2) and NRAA(2,1).

NAA(1,2)= -9,14 kN, negative answer so not to
the left as assumed but directed to the right.
NAA(2,1)= -10,86 kN, that's to the left.
J A5
:—~
N, Nz
4 @
/ A r—

g, /4 9K Q. ly RS 4

2

Fig.15.

Joint 2 with a member load force, not a joint
load force, separated with the assumed directi-—
ons of N5 and N7.

N5= -9,14 kN, a negative answer so not directed
as assumed but opposite directed that's to the
left. Acting at member end A as large as but
opposite directed, that's to the right. Member
part 1-A in equilibrium.

Joint 2 is A, N7= -1,14 kN, not directed to the
left as assumed but to the right. The joint is
in equilibrium.

Suppose the member load forces to the left.
Type 1 in TPY9, next 1,1,2,1,2,0 Enter and
1,-8,2 Enter and 2,-12,5 Enter.
calculate, DRAWNS etc. on the left.

NMAX is the largest normal force of member 1,
N5MAXX is the largest normal force of all mem-—
bers, here only one member. See next page with
three members.
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normal force diagram

1] —— —=2 3 4
l ——-h-g
= -5,14 XN X=0,00m P=1
= -1,14 kN X¥=0,00m P= 2
= 10,86 kN X=0,00m P= 3
NSMAXX= 10,86 KN X=0,00m P= 3
NAA(1,2)= -5,14 XN NAA(2,1)= &,14 kKN
NAA(2,3)= -1,14 KN NAR(3,2)= 1,14 kN
NAA(3,4)= 10,86 kN NAR(4,3)= -10,86 XN
RH(1)= -9,14 kN UH{l)= 0,00 /EA
RH({2)= 0,00 kN UH(2)= 18,29 /EA
RH(3)= 0,00 kN UH(3)= 21,71 /EA
RH(4)= -10,%6 kN UH(4)= 0,00 /EA
member 1
¥= 0,00 m NS= -9,14 kN N7= -5,14 kN
¥= 1,60 m N5= -9,14 kN N7= -6,14 kN
¥= 2,00 m NS= -9%,14 kN N7= -5,14 kN
member 2
X= 0,00 m NS= -1,14 KN N7= -1,14 kN
X= 1,60 m NS5= -1,14 kN N7= -1,14 kN
X= 3,00 m N5= -1,14 ¥N N7= -1,14 kN
member 3
X= 0,00 m NS5= 10,86 XN N7= 10,86 kN
X= 1,60 m N5= 10,86 kN N7= 10,86 kN
¥= 2,00 m N5= 10,86 kN N7= 10,86 kN
normal force diagram
il 772 -—— 3 4
1 3
NMAX= -20,00 kN X=0,00m P=1
NMAX= -12,00 kN = 0,00m P=2
NMARX= 0,00 kN X=0,00m P= 3
NSMAXX= -20,00 ¥ X=0,00m P= 1
NBA(l,2)= -20,00 kN NRA(2,1)= 20,00 kN
NAR(2,3)= -12,00 ¥N NAR(3,2)= 12,00 kN
NARA(3,4)= 0 kN NAA(4,3)= 0 kN
RH(1l)= -20,00 kN UH(l)= 0,00 /EA
RH{2)= 0,00 kN UB(2)= 40,00 /EA
RH(3)= 0,00 kN UH({3)= 76,00 /EA
RH(4)= 0,00 kN UB(4)= 76,00 /EA

Example.

P x P/ AT 2 EA [,*3 A ¥

‘ 4 2 m = 3 1 2
Fig.1l6.
N9=4 joints. P9=3 members.
I FX PH UH SH X1 P 1L H Al NFA NQA
1 0 1 0 0 Q 11 2 1 0 0
2 8 0 6] 0 2 2 2 3 1 0 0
3 12 0 0 0 5 3 3 4 1 0 0

4 0 1 0 0 7

Type 4 in TN9, next joint data in TSTRING,

type 3 in TP9, next member data in TSTRING.
Results and Reactions.

Click Calculate, DRAWNS,

Type 1.6 in TG for G=1.6 m, click N5N7 Step G.

/.
y 2,-4544’ 31‘“9 4

G4y ’ 2 CI2-W
2’y 1 3 9%
2.1_——'_1D

%75 4%
4y 2 3 47%
a9
v /6,84
Fig.17. /p"yéa-. 4 20,54

Members and joints are separated from each
other. The member end forces are drawn with
their real directions. On the Jjoints act forces
as large as but opposite directed, Members and
joints are in equilibrium.

-t e S
G 74 NS NS AZ
c
J— —_— >
2 b 9./% A%
—t
Fig.18.
Member 1, drawn a part with length 1.6 m.

And member end € seen as a ‘'joint’ without
joint load force, with assumed N5 and N7. Next
NS and N7 are drawn with their real direction.
At C act a force as large as but opposit
directed. Equilibrium.

In such case N7 can be omitted and not printed
because 'joint' load force does not exist. See

the preceding page.

Suppose joint 4 can move freely horizontally,
displacement not prescribed, so PH(4)=0.
Click CSE=0 to CSE=1, and type in TSTRING
PH(4)=0 FEnter. Etc. See the results shown on
the lsaft.
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normal force diagram EX1
3.3 4 &
1] =<=—=—2 3
ol A
42X
= -3,83 kN X=0,00m P=1
= -4,833 kN X=4,01lm P= 2
NSMAXX= -4,83 KN X=4,01m P= 2
NRA(1l,2)= -3,83 XN NaA(2,1)= 3,83 kN
NARA({2,3)= 4,17 XN NAX(3,2)= 4,83 kN
RH(1)= -3,83 kN UH(l)= 0,00 /EA
RH(2)= 0,00 kKN UH(2)= 7,67 /EA
RH(3)= 4,83 kN UH(3)= 0,00 /EA
CSE=0 Results Reactions Show Again

No={ | oK | crs

Po={" G NSN7 Step G | All Over Again |

PrF [DRAWNS| Calculste| STORE NR=? GET
EXAMPLESE1 EX1 EX2 EX3 EX4 EXS EX6 End|

normal force diagram EX2
483
2 1 3
— § —— —_— —— l
3193 '91/2’
= -4,83 KN X=4,01m P=1
= -3,83 kN X=0,00m P=2
NS = -4,83 XN X=4,01lm P=1
NAA({l, 3)= 4,17 XN NAA(3,1)= 4,83 KN
NAA(1l,2)= =-3,23 kKN NBA(2,1)= 3,83 kN
RH(1l)= 0,00 kN UH(1l)= 7,67 /EA
RH(2)= -3,83 kN UH(2)= 0,00 /EA
RH(3)= 4,83 kN UH(3)= 0,00 /EA
normal force diagram EX3
%63 J, 83
1r\\\\\ 2| =—— 3
j: 2
977
= -4,83 KN X=0,00m P=1
= -3,83 kN X=0,00m P=2
NS = -4,83 kXN X=0,00m P=1
NAA(l,2)= -4,83 kN NAn(2,1)= -4,17 kN
NAR(2,3)= -3,83 XN NAA(3,2)= 3,83 KN
RH(1)= -4,83 kN UH{1l)= 0,00 /EA
RH(2)= 0,00 kN UH(2)= -7,67 /EA
RH(3)= 3,83 kN UH(3)= 0,00 /JEA

Example EX1.

S v
1/ 2,_Jf*%/,,zfiif::T::j:::ls
15*3 P=s [€4 P=2 E4 F
= 2m R 3 .

Fig.19.

| Joints and members are regularly numbered from

1-2-3 and 1-2.
P9=2 members.

left to right,
N9=3 djoints.

I FX¥ PH UH SH X1 P L H Al NFA NOQA
1 0 1 0 0 { 1 1 2 1 0 0
2 8 ] 0 0 2 2 2 3 1 0 1
3 0 1 0 0 6 I Q6 Q7 L6 L7
1 0 -6 1 3

ype 3 in TN9, next joint data in TSTRING,
,0,1,0,0,0 Enter, 2,8,0,0,0,2 Enter and
:0,1,0,0,6 Enter

ype 2 in TP9, next membrer data in TSTRING,
:1,2,1,0,0 Enter, 2,2,3,1,0,1 Enter and
,0,-6,1,3 Enter. Click Calculate etc.

UH(2)= 7,67/EA

Example EX2.

Stayim

4 t-fL—JQév,<f:f:f::i::i;;;L3

ﬂ P=2 EA / * ﬁ: rd &4
=X/ an N 3m "
1

2

Fig.20

Joints and members are irregularly numbered
from left to right, 2-1-3 and 2-1.
N9=3 joints. P9=2 members.

I FX PH UH SH Xl P L. H Al NFA NOQA
1 8 0 0 0 2 1 1 3 1 0 1
2 0 1 0 0 0 I 96 Q7 L6 L7
3 0 1 0 0 6 1 0 -6 1 3

2 1 2 1 0 0

The member axis system of member 2 is placed at
the lowest member end number according to the

assumption! UH(1l)= 7,67/EA
Example EX3.
& &A\Yim
8
p .. s -— 3
[ R, & [, "R2eal
; 3 } / ﬁ 2 i
Fig.21.
N9=3 joints. P9=2 members.
I FX PH UH SH X1 P L. H Al NFA NQA
1 0 1 0 0 0 1 1 2 1 0 1
2 -8 0 0 0 4 I Q6 Q7 L6 L7
3 0 1 0 0 6 1 6 0 0 3
2 2 3 1 0 0

UH(2)= -7,67/EA




normal force diagram EX4
1 .-t 2 3
= -3,43 kN X=10,00m P=1
= 2,57 kN X=0,00m P=2
NSMEXX= -3,43 KN X=0,00m P=1
NRA(l,2)= -3,43 XN NBA(2,1)= 3,43 kN
NBA({2,3)= 2,57 kKN NAR(3,2)= -2,57 KN
RH(l)= -3,43 XN UH(l)= 0,49 /EA
RHE(2)= 0,00 kN UH(2)= 6,21 /EA
RH{3)= -2,57 kN UH({3)= 0,37 /EA
I FX PH UH SH X1
1 0 0 0,5 7,0 0
2 g,0 0 6,2 0 2,50
3 0 0 0,4 7,0 5,00
P L H Al NFA NQA
11 2 1,5 0 0
P L H al NFA NQA
2 2 3 1,1 1] 0
normal force diagram
1 = . 2 3
1 2
PP S
NMAX= -3,44 KN X=0,00m P=1
NMAX= 2,56 kN X=0,00m P= 2
NSMAXX= -3,44 LN X=0,00m P=1

When going on after the last results
with prescribed UH(1l) and UH(3) and no
horizontal hinges, as follows.

Click CSE=0 to CSE=1 red.

First click Again to make all displace-
ments UH(I)=0 for the next main calcu-
lation.

Next in to type in TSTRING
PH(1)=1 Enter, PH(3)=1 Enter,

no horizontal hinges,
SH(1)=0 Enter, SH(3)=0 FEnter,

values of prescribed displacements,
UH(l)=.49 Enter, UH(3)=.37 Enter.

Click Cls and Show to check the new
data and click Calculate, DRDRAWNS etc.
Finding the same recgults as ahove.

Example EX4.
b A/
/

Ay 2= 3
;;=P=/ L5E4 % P=3 4lea
| 2.5m i 25 -

Fig.22

YW

Joint 1 and 3 are horizontal hinges with hinge
constant 7 ER, the horizontal displacements of
joint/support 1 and 3 are not prescribed so
PH(1)=0 and PH(3)=0.

Member 1 and 2 with different strain stiffness
All(l)= 1.5 EA and A11(2)= 1.1 EA.

N9=3 joints. P9=2 members.

I FX PH UH SH X1 P L H Al NFA NOA
1 0 0 0 7 0 1 1 2 1.5 O 0
2 6 0 0 0 2.5 2 2 3 1.1 O 0
3 0 0 0 7 5.0

The calculation horizontal diaplacements are
UH(1)= 0,49 UH(2)= 6,21 UH(3)=0,37 /EA.
positive answers SO as assumed to the rignt.

3,43 / 2 343
LT EA
949 R

Fig.23.

Member 1 becomes longer by the member end force
of 3,43 kN. With AL= F*L/'EA" follows

AL= (3,43%2,50)/1,5ER= 5,72/EA longer.

The figure shows
Al= UH(2)-UH(I)= 6,21/EA -5,72/EA= 0,49/ER ok

2374/ 2 9 237
pide 7 71ER
,6,2/' 2.37

Fig.24.

Member 2 becomes shorter by the member end for-
ce of 2,57 kN.

AL= (2,57*2,50)/1,1EA= 5,84/EA shorter.

The figure shows
AL= UH(2)-UH(3)= 6,21/EA -0,37/EAR= 5,84/EA ok

4 E
1 F

4/ 2
E| /

b i

Fig.25.

N9=3 joints. P
F¥ PH UH SH X1 B
1
2

I
1 0 1 0 .49 0
2 6 0 Q 0 2.5
3 0 1 0 .37 5
Displcements UH(1l) and UH(3) are prescribed,
PH(1)=1 and PH(3)=1, no hinges at member end 1
:and 3, SH(1)=0 and SH(3)=0.

Final results are like found above, ofcourse.
(Or with prescribed UH(2)=6.21 and PH(2)=1,

_final resulte the same.)
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normal force diagram EXS
2,33 &N 3,32
lp——— — a3
1 ¥ 2
’ fy —-
T 548
= -2,32 kN =0,00m PB=1
= 5,68 kN X=0,00m P= 2
NSMAXN = 5,68 kN X=0,00m P= 2
NRA(l,2)= -2,32 kKN HNRA(2,1)= 2,32 k¥
NAA(2,3)= 5,68 ¥N NBRA(3,2)= 3,32 kN
RH(1)= -2,32 KN UH(1l)= 0,00 /ER
RH(2)= 0,00 kN UH(2)= 4,64 /ER
RH(3)= 3,32 kN UH(3)= -0,55 /EA
I FX PH UH SH X1
1 0 1 0 0 0
2 5,0 0 4,6 0 2,00
3 0 0o -~0,6 6,0 7,00
P L H al NFA  NQA
1 1 2 1,0 a 0
P L H Al NFA NQA
2 2 3 2,0 1 0
I F5 L5
1l -%,0 3,00
normal force diagram EX&
& _— 4
3 p.._zi - .‘.ﬂ
L= 2 | =—
NMAX= -2,32 kN X=0,00m P=1
NMRX= 5,68 kN X=2,01m P= 2
NSMAXX= 5,68 XN X=2,01lm P=2
WAA(2,3)= -2,32 KN NAA(3,2)= 2,32 kN
NBA(1l,2)}= -3,32 XN NBA{(2,1)= -5,68 kN
RH{l)= 3,32 XN UH(l})= -0,55 /EA
RHE(2)= 0,00 kN UH(2)= 4,64 /EA
RH({3)= -2,32 kN UH(3)= 0,00 /EA
I FX PH UH SH X1l
1 0 0 -0,6 &,0 7,00
2 2,0 0 4,0 0 2,00
3 0 1 0 0 (]
P L H Al NFA NOA
1 2 3 1,0 0 0
P L H Al NFA NOA
2 1 2 2,0 1 0
I F5 L5
1 9,0 2,00

Example EXS5.

X/
4/ 2, &~ g% 3y
= = gl
ﬂ’P:/ & 7 P:2  afA i
l ; 2 — 3”) N a. i

Member 1 and 2 with different strain stiffness
All(l)= 1 EA and All(2)= 2 EA. At joint 3 a
horizontal hinge with constant SH(3)= 6 EA.

N9=3 joints. P9=2 members
I FX PH UH SH X1 P L H Bl NFA NOA
1 0 1 0 0 0 1 1 2 1 0 0
2 8 0 0 0 2 2 2 3 2 0 0
3 0 0 0 6 7 I F5 LS
T -9 3
MAAL.3) A A MNAAL33)
——— L
2 3
565 S48 3,32 J.32
Phr
-
8 3,32

Fig.27.

Member 2 divided into two parts at A. Two mem-
ber end forces NAA(2,3) and NAA(3,2) are known
and drawn with their real directions. Both
parts are in equilibrium, the forces at A are
drawn with their real directions. At the sepa-
rated joint act forces as large as but opposite
directed. The joint is in equilibrium. ok

Example EX6.

X/

e & 4

1 sy il tﬁlyvﬂ
13 2 /

i As éAi P=2 2 EA y

; 2 \ i 2 i

' " 1

Fig.28.

Like fig. 26 but with different joint numbe-
ring, 3-2-1 in stead of 1-2-3.

The member axis system rﬁi always at lowest
member end number (becoming of importance wiyh
trusses).

Assumed direction of joint load forces like X1,
also here 8 kN, not -8 kN, but 9 kN is a member
load force with assumed direction of x-axis of
the member axis system.

N9=3 joints. P9=2 members.
I FX PH UH SH X1 P L H Al NFA KNQA
1 0 1 0 0 0 30 L 20 0 0
2 8 0 0 0 2 2 2 3 2 0 0
3 0 0 0 6 7 1 E5 L5

1 9 2

Hinge force at member end 1 on the right, is
UH(1)*6EA= (0,55/ER)*6EA= 3,30 kN is 3,32 kN ok
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normal force diagram EX81
l[_j:::Ti::T“-\\\ 2 3 4
3 [y PR, |
= 5,67 XN X=0,00m P=1
= 5,67 ¥kN X=1,00m P= 2
= -6,33 KN X=0,00m P= 3
N = -6,33 KN =0,00m P=3
NAA (3,4)= 5,67 kN NARh(4,3)= -1,67 kKN
NAA ({2,3)= 1,67 XN NBA(3,2)= -5,67 kN
NRA(1,2)= -6,33 KN NAA(2,1)= -1,67 kN
RH(l)= -6,33 kN UH(1l)= 0,00 /EA
RH(2)= 0,00 kN UH(2)= 7,33 /EA
RH(3)= 0,00 kN UH(3)= 4,33 /EA
RH(4)= -1,87 kN TH(4)= 0,00 /EA
I FX PH U 5H X1
1 0 1 0 0 a
2 0 a 0 0 2,00
3 0 0 0 0 3,00
4 0 1 0 0 4,00
P L H Al NFA  NQA
1l 3 4 1,0 0 1
I Q6 Q7 L& L7
1 0 -8,0 0 1,00
P L H al NFA NQA
2 2 3 1,0 0 1
I Q6 o7 Lé 7
1 0 8,0 6 1,00
P L H Al NFA NQA
3 1 2 1,0 0 1
I Qe Q7 Lé L7
1 0 8,0 o 2,00
PrF

nermal force diagram

= 3,00kN X=0,00m P=1
= 3,00 kN X=1,00m P= 2
= -1,00 kN = 0,00 m P= 3
NSMAXX= 3,00 kN ®=n,nnm Ps ]

Examples with EXAMPLESS to click on for eight

different possible normal force diagrams from
EXAMPLES8 to EXAMPLESS8.

Click EXAMPLES8 to EXAMPLESS1

All examples with N9=4 joints and P9=3 members,
all members with Al=1.

Joint numbering in various ways, member numbe-
ring regular for all eight cases from right to
left with 1-2-3-4.

LRm b &

, 1| 3l G
3

1= 7 7
h .{’1/ ’

¥
| L | | -
Fig.29 -+ % ;
N9=4 joints. P9=3 members.
I FX PH UH SH X1 P L H Al NFA NOA
1 0 1 0 0 0 1 3 4 1 0 1
2 0 0 0 0] 2 I Q6 Q7 L6 L7
3 0 0 0 0 3 1 0 -8 0 1
4 0 1 0 0 4
2 2 3 1 0 1
I Q6 Q7 L6 L7

31 2 1 0 1
I 06 Q7 L6 L7
1 0 8 0 2

After input of joint and member data click
Calculate, DRAWNS5, Results and Reactions.

On the right of the reactions the horizontal
displacements UH(I) are printed, values
UH(1)=0 UH(2)= 7,33 UH(3)= 4,33 UH(4)= 0 /EA

Before clicking Show click first Again to make
all UH(I) zero, next click Show.

The bottom of the data 'disappear' on the con-
trols, click somewhere on the form to make the
controls invisible, with another click they be-
come visible again.

The member axis systeml:1:always placed at the
lowest member end number determines which side
of the member axis indicates pressure or ten-
sion. Assumed is pressure at the side of the
axis system. For this example pressure below
and tension above the zero line.

Suppose the distributed load forces of member 3
to be removed, as follows.

Double click TP9 if necessary, type 3 in TP9,
Tab, and for P L. H Al NFA NQA in TSTRING

3,1,2,1,0,0 Enter. Show gives the line below
P L H Al NFA  NQA
3 1 2 1,0 D 0

Next Calculate, DRAWNS, Results and Reactions,
a beautiful normal diayraw appedls.
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normal force diagram EXg2

2{i::j?::?\mﬂﬁx\-3r-*::::31 4
R =

NAA(L, )= 5,67 KN NARA({4,1)= -1,67 kN

NAA(l,3)= S,67 XN NAR(3,1)= -1,67 kN

NAA(2,3)= -6,33 KN NAA(3,2)= -1,67 kN
RH{1l)= 0,00 kN UH(l)= 4,33 /EA
RH{2)= -6,33 kN SH(Z2)= 0,00 /EA
RH(3)= 0,00 kN UH(3)= 7,33 /EA
RH{4)= -1,67 kN UH(4)= 6,00 /EA
normal force diagram EXE3

3m4;—//~£\‘h

3 ™~ 2 1
NAA({l,2)= 1,67 KN NAA(2,1)= -5,67 kN
NAA(2,4)= 5,67 kN NBA(4,2)= -1,67 XN
NAA(3,4)= -~6,33 kXN NaA(4,3)= -1,67 kN
RH{l)= -1,67 kN UH(1)= 0,00 /EA
RH(2)= 0,00 kN UH(2)= 4,33 /EA
RH{3)= -6,33 KN UR({3)= 0,00 /EA
RH(4)= 0,00 kN UH(4)= 7,33 /EA

normal force diagram EX84

1’_"R 3 o[ ==
. 3 H“L“—uik:::j 1

NAA(2,4)= 1,67 XN NAA(4,2)= -5,67 kN

NAA (3,4)= 1,67 KN NRA(4,3)= -5,67 kN

NAA(1l,3)= -6,33 kXN NAA(3,1)= -1,67 kN
RH({(l)= -6,33 kN UH(l)= 0,00 /EA
RH{2)= -1,67 kN UH(2)= 0,00 /EA
normal force diagram EXES

—-—— 3 2 1
NARA(1,2)= 1,67 XN NBA(2,1)= -5,67 kN
NAA(2,3)= 5,67 kN NAA(3,2)= -1,67 kN
NAA(3,4)= 1,67 XN NAA({4,3)= 6,33 kN

' Click EXAMPLES81 to EXAMPLESS2

Phyym Q) e,

5 1

2 /ﬂ// f]/#

; I e S —a--—w--_';.‘ e e 1

:‘/ 3 2 7 ?
2m L L \ o

1
I ' T

~ 7}
l“';/ —

T
4[;‘&3 3

4
Fig.30.
N9=4 joints. P9=3 members.
I FX PH UH SH X1 P L H Al NFA NQA
1 0 0 0 0 3 1 1 5 1 0 1
2 0 1 0 0 0 I Q6 Q7 L6 L7
3 0 0 0 0 2 1 0 -8 0 il
4 0 1 0 0 4
2 1 3 1 0 1
I Q6 Q7 L6 L7
1 -8 0 0 1
3 2 3 1 0 1
I Q6 Q7 Le L7

1 0 8 0 2
Click EXAMPLES82 to EXAMPLESS3

4 & &
3 4 2 /|,

e i p— — e |

| g | {nzg_fy fu_:ZjE
l;"‘:

. Fig.31.

Click EXAMPLES83 to EXAMPLESS84

Y 4 d &
M._-——a--—\-"- ...,_...i -—#—4;2-;
4 3 2 Y 4
L e ]

- b

Fig.32.

Click EXAMPLES84 to EXAMPLESS85

& by Y

3 2 g, 2 ’
A I I

Fig.33.

The examples show various possibilities of
joint numbering with correspondind drawings of
the normal force diagrams. There are various
possibilities of member numbering as well.

Three other cases EXAMPLES86 to EXAMPLES88 left
to compare.
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I=1 X1(1)=0
I=2 X1(2)=0,5
I=3 X1(3)=1

P=1 IL(l)=1 HH(I)=2 AIl(1)=2
P=2 LL{2)=2 HHE(2)=3 All(2)=3

Ne={ 3~ 1 [OK] ShowcCC

P9=I"2" EX1 EX2 EX3 EX4 Again End

STORE NR=? GET Cls  PrF

1 2 3
4,00 -4,00

2 -4,00 4,00

3 55
1 2 3
1 4,00-4,00
5 —4,00 4,00
3 ac
il 2 3
2 6,00 -6,00
3 -6,00 6,00
Ay
i 2 3
4,00 -4,00
-4,00 10,00 -6,00
-6,00 6,00 cc
I=1 - X1(1)=1
I=2 X1(2)=0,5
I=3 X1(3)=0

P=1 LL{l})=2 HH(1)=3 All{l)=2
P=2 LL{2)=1 HH(2)=2 All{2)=3

1 2 3

4,00 -4,00

-4,00 4,00
S5

4,00 -4,00

-4,00 4,00
ac

AXCC111

Member stiffness matrices S5 and construction
stiffness matrix CC, -

Exmaple, see page 10. (Al is EAA(P))

/
[ - = 91 3!
& - 32
/a5'2 A, , P2 £A
—t -
e 4o ;
1 |
Fig.1.
N9=3 joints P9=2 members
I 1 2 3 P 1 2
X1(1) 0 .5 1 L 1 2
H 2 3
Al 2 3

When puting in data line after line appears on
the screen

Type 3 in TN9, Tab and type in TSTRING
1,0, Enter, 2,.5 Enter and 3,1 Enter,

cursor in TP9, Tab, and type in TSTRING
1,1,2,2 Enter and 2,2,3,3 Enter.

First click on Show CC, prints first stiffness
matrix S5 of member 1 two times
with L=1 and H=2, row and column 1 and 2.

Second click on Show CC, prints second stiff-
ness matrix S5 of member 2,

first time with L=2 and H=3, row and column

2 and 3,

second time it is added to stiffness matrix CC,

with L=2 and H=3, row and column 2 and 3.

Joint numbering 3-2-1 in stead of 1-2-3.

13 '?l 4/1
= 264 P=2 I3£A4
1 4
i +
X/
o+ 4
Fig.2.
N9=3 joints P9=2 members
I 1 2 3 P 1 2
X1(I) 1 .5 0 L 2 1
H 3 2
Al 2 3
1 2 3

1 6,00-6,00

2 =6,00 6,00

1 2 3
1 6,00-6,00

2 -6,00 10,00 -4,00

3 -4,00 4,00 ce
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I=1 X1(1)=0 Example. EX1 N9=4 P9=3
I=2 X1{2)=2
I=3  X1(3)=4 4 2 2, %
I=4 Xl{d)=6 7 <4 2 2&4 3 AEA
P=1 LL{1)=1 HH(1)=2 All(l}=1 r 2 | VR B S—
P=2 LL{2)=2 HH(2)=3 All (2)=2 4
P=3 LL(3)=3 |HH(3)=4 Al11{3)=3 + f
i é _i_
1 2 3 4 '
. N9=4 joints P9=3 members
I 1 2 3 4 P 1 2 3
X1(I) 0 2 4 6 L 1 2 3
H 2 3 4
Fig.3. a1l 1 2 3
0,50 -0,50
-0.50 0 Click EX1, data are printed. Click three times
! 150 ' to find the results shown on the left.
1 2 3. 4 Example. EX2 N9=5  PY9=4
0,50 -0,50 / 2 Pe
L [ 3. ‘;I =3
-0,50 1,00-0,50 / 2 3 &
' '5- f 16 5 -? . -9 _i_
-0,50 1,00 -0,50 ¥ ' ' '
-3
+—
-0,50 0,50 ' .,
il . & :
. 2.4 )
I=1 X1{1)=0 *
I=2 X1(2)=0,5 N9=5 joints P9=3 members
I=3 X1{(3)=1,1 I 1 2 3 4 5 P 1 2 3 4
I=4 Xi(4)=1,8 X1(I) 0 .5 1.1 1.8 2.6 L 1 2 3 4
I=5 X1(5)=2,¢ _ B 2 3 4 5
P=1 LL(1)=1 HH(1)=2 All(l)=l Fig.4. Al 1 1 1 1
B=2 LL{2)=2 HH(2)=3 All{2)=1 |
P=3 LL(3)=3 HH{3)=4 BAll(3)=l Example.  EX3 N9=6  P9=5
P=4 LL(4)=4 HH(4)=5 All({4)=1
1 p 3 2 5 Results below after fifth click.
A R R R
’ 2 3 £ by
, 7 ./ 1m oy 7 ;
1 1 L ] ] I
N9=6 joints P9=5 members
I 1 2 3 4 5 6 P 1 2 3 4 5
1,25-1,25 X1(I) 0 1 2 3 4 5 L 3 4 5 1 2
H 4 5 6 2 3
-1,25 1,25 Fig.5. Al all 1.6
1 2 3 4 5 1 2 3 4 S [
2,00 -2,00 1 1,60-1,60
-2,00 3,67 -1,67 5 -1,60 3,20-1,60
-1,67 3,10 -1,43 3 -1,60 3,20 -1,60
-1,43 2,68 -1,25 4 -1,60 3,20-1,60
-1,25 1,25 5 -1,60 3,20 -1,60
_ -1,60 1,60
Lo)
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Input joint and member data.

}-'.:(amp_lg .

/2
Type 6 in TN9, Tab, and in TSTRING —_ > ’5' = 4- > J, K_L
J
47 /3 2.5 /J Z .
1,0 Enter, 2,1.1 Enter, 3,2.4 Enter, + —t \ f £ =P ==
4,3.9 Enter, 5,5.6 Enter, 6,7.5 Enter. +— 2.4 ‘
1
Type 5 in TP9, Tab, and in TSTRING +— 2.9 f
. 3.6
i,1,2,1 Enter, 2,2,3,1 Enter, 4 t
3,3.4,1 Enter, 4,4,5,1 Enter, e ZE ™ ]
4,4,5,1 Enter, 5,5,6,1 Enter . !
Fig.6.
I=1  X1{l)=0
I=! X1{2)=1,1 N9=6 joints
I=3 X1{3)=2,4 I 1 2 3 4 5 6
I=4 X1{4)=3,9
1=5  X1(5)=5.6 X1(I) 0 1.1 2.4 3.9 5.6 7.5
=6 X1(6)=17,5
P=1 ILL(l)=1 HH(1)=2 All{l)=l P9=5 members
P=2 LL{2)=2 HH(2)=3 All(2)=l P 1 2 3 4 5
i LL(0-4 ER(AISS  ALL(O-1 Loz s s
T2 mhes MLm= H 2 3 4 5 6
P=5 LL(S)=5 HH(S5)=6 All({(5)=1
) Al 1 1 1 1 1
1 2 3 4 s 6 1 2 3 4 5 € 1 2 3 4 5 6
1 0,91 -0,91 1 1
5 -0,91 0,91 2 0,77 -0,71 2
3 3 0,77 0,77 3 0,67 -0,67
4 4 4 0,67 0,67
5 5 5
6 59" 6 6
1 2 3 4 3 6 1 2 3 4 5 6 1 2 3 4 5 6
, 0,91 -0,91 ; 0,91 -0,91 ; 0,91 -0,91
5 0,91 0,91 5 0,91 1,68 -0,77 2 0,91 1,68 -0,77
3 3 -0,77 0,77 3 -0,77 1,44 -0,67
4 4 4 -0,67 0,67
5 5 5
6 (253 . 6 €
I
/ 2 3
1 2 37 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
1 1 ; 0,53 -0,53
2 2 2 0,53 0,53
3 3 3
4 0,59 -0,59 4 4
5 -0,59 0,59 5 0,53 -0,53 5
c ¢ 9T -0,53 0,53 p S3
1 2 3 4 ] 6 1 2 3 q 5 € I 2 3 q [ 6
; 0,91-0,91 1 0,91-0,91 , 0,53 -0,53
2 ~0,91 1,68-0,77 2 -9,91 1,68-0,77 2 0,53 1,11 -0,59
3 -0,77 1,44 -0,67 3 -0,77 1,44 -0,67 3 -0,59 1,25 -0,67
4 -0,67 1,25 -0,59 4 -0,67 1,25 -0,59 4 -0,67 1,44 -0,77
5 -0,59 0,59 5 -0,59 1,11 -0,53 5 -0,77 1,68 -0,91
6 ¢ CC -0,53 0,53 s CC -0,91 0,91
e 3 Member numbering in reversed or-

der,

5-4-3-2-1 i.s.o.

1-2-3-4-5.
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I=1 X1(1)=7,5

Example.

I=2  X1{2)=5,6 EXY
1f4 X1(4)=0 e 7 =2 <4 3
1=5 X1(5)=1,1 L/ 3 45 L Az L Ae
I=6 X1(6)=2,4 e e : t 4
P=1 LL(1)=4 HH(1)=5 Ali(1)=1 2
P=2 LL(2)=5 HH(2)=6 All(2)=l 1————4/——"
P=3 LL(3)=3 HH(3)=6 All(3)=l o 3.9 N
P=4 1L{4)=1 HH(4)=2 All{4)=l . y
P=5 LL{5)=2 HA{S)=3 Al1({S5)=1 N Fé
v T
. . ?,é- N
¥ 1
Fig.7.
I=1 X1(I)=2,4
=2 X1(2)=3,9 N9=6 joints
I=3 X1(3)=1,1 =
=4 x1(4)=7 5 I 1 2 3 4 5 6
]
I=5 X1(5)=0 X1(I) 2.4 3.9 1.1 7.5 0 5.6
I=6 X1{6)=5,6
P=1 LL(1)=1 HH(1)=3 All(1)=l P9=5 members
P=2 LL{(2)=1 HH(2)=2 All(2)=l T 1 2 23 4 5
P=3 LL{3})=4 HH(3)=6 AlI{3)=1 1 1 1 5 5
P=4 LL{4)=2 HH{4)=6 All{4}=1 L
P=5 LL{S5)=3 HHE(5)=5 All(5)=1 H 3 2 6 6 5
Al 1 1 1 1 1
1 2 3 3 5 6 1 2 3 a 5 6 1 2 3 4 5 €
1 0,77 -0,77 0,67 ~0,67 b
2 -0,67 0,67 A
3 -0,77 0,77 3
4 4 0,53 -0,53
5 5
€ € -0,53 0,53
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
. 0,77 -0,77 1,44 -0,67 -0,77 L 1,44-0,67-0,77
-0,67 0,67 2 -0,67 0,67
-0,77 0,77 -0,77 0,77 3 -0,77 0,77
4 0,53 -0,53
5
¢ -0,53 0,53
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 €
1
0,59 -0,59 2 0,59 -0,59
0,91 -0,91 3 -0,59 0,59
4
-0,91 0,91 5 EXY
-0,59 0,59 6
1 2 3 4 5 6 1 2 3 4 5 € 1 2 3 4 5 6
1,44 -0,67 -0,77 1,44 -0,67-0,77 1 0,53 -0,53
-0,67 1,25 -0,59| -0,67 1,25 -0,59 2 -0,53 1,11 -0,58
-0.77 0,77 -0,77 1,68 -0,91 3 -0,59 1,25 -0,67
0,53 -0,53 0,53 -0,53 4 0,81 -0,91
-0,91 0,91 5 -0,91 1,68 -0,77
-0,59 -0,53 1,11 -0,59 -0,53 1,11 P -0,67 -0,77 1,44

after 5th click for EX4
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42 2 5 7
7 Z 3 7
” /
-{_l f 3 -9 ' I
t 5- —
4 7 +
20
+— —t
Fig.8.
I=1 X1(1)}=2
I=2 X1(2)=5 N9=6 joints
1=3  X1{3)=10 T 1 2 4 5
=4  XI(4)=0
=5  X1(5)=9 X1(I) 2 5 10 0 ?
p=1 LL(l)=1 HE(1)=4 All(l)=l
P=2 1IL{2)=1 HH(2)=2 All{2)=l P9=5 members
P=3 LL(3)=2 HH(3)=5 All(3)=I P 1 2 3 4
P=4 LL(4)=3 HH(4)=5 All{4)=1 L1 1 2 3
H 4 2 5 5
Al 1 1 1 1
1 2 3 1 5 1 2 3 1 5 B 1 2 3 4 5
0,50 -0,50 1 0,33-0,33 1
5 -0,33 0,33 2 0,25 -0,25
3 3
-0,50 0,50 4 3
5 5 -0,25 0,25
1 2 3 a 5 1 2 3 4 5 1 2 3 4 5
0,50 -0,50 , 0,83-0,33 -0,50 . 0,83-0,33 -0,50
2 -0,33 0,33 5 -0,33 0,58 -0,25
3 3
-0,50 0,50 4 -0,50 0,50 4 -0.50 0,50
5 5 -0,25 0,25
/ o 2 3
1 2 3 4 5 1 2 3 4 5
1
2
/I PR | '31 ?i. 3 2
Fa
1,00 -1,00 2 3 4 3
pe. 1 ‘1—1— S| & |“"'
= i | — . 1,00 -1,00
-1,00 1,00 5 -1,00 1,00
1 2 3 4 5 I=1 X1(1)=0 1 2 3 4 5
=2 X1{2)=2
0,83 - - .
,83 -0,33 0,50 -3 ¥1(3)=S 1 0,50-0,50
-0,33 0,58 -0,25 I=4  X1{4)=9 , -0,50 0,83-0,33
1=5 X1(5)=10
1,00 -1,00 P=1l LL(l)=1 HH(1)=2 All{1)=l 3 -0,33 0,58 -0,25
_ P=2 1L{2)=2 HH(2)=3 All{2)=1
0,50 0,50 P=3 IL{3)=3 EE(3)=4 All(3)=l 4 -0,25 1,25-1,00
-0,25 -1,00 1,25 P=4 ILL(4)=¢ HE(4)=5 RAll{4)=1 . -1,00 1,00
&
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il 2 3 4 5 €
1 063 -063
2 063 205 -143 /-
3 143 1,93 -0,50
4 050 1,68 -1,18
5 -1,18 1,61 043
€ ' 043 043
Ng=[ | [0K] showcec
PS9=[" EX1 EX2 EX3 EX4 Again _End
Show STORE NR=3 GET Cis PiF |

Storing data.
Click NR= to e.g. not underlined NR=3.

Click STORE, gets underlined, NR=3 as
well, NR=3. See STORE NR=3 GET

Click NR=3 underlining disappears.

If later clicking NR=... to NR=3 then
click GET gets underlined GET to get

the stored data. First click Again !!
and Show shows those data.

To remove data of NR=3, click GET (or
GET if wanted) with right mouse button
and underlining of NR=3 and GET dis-
appears.

1 2 3 4 5 €
1 043 -043 o 3.
2 043 161 -1,18
3 -1,18 1,68 -0,50
4 050 1,93 -143
5 -143 205 -0,63
€ 063 063

1 2 3 4 5 €
1 193 -1,43 -0,50
2 0.43 0,43
3 0.63 -0,63
4 0,43 1,61 -1,18
5 -1,43 -0,63 2,05
€ 050 -1,18 1,68

Example 1. AXCC222
&4 Q€4 &4 2E4 _
£E4
t?*gl f- 1 2 q‘ _f
/ 2 3 4 5
y L6 LYy, Am | 4F 23
L} 1 T [ L)
N9=6
I 1 2 3 4 5 6
X1(1) 0 1.6 3 5 6.7 9
P9=5
p 1 2 3 4 5
LL(P) 1 2 3 4 5
HH (P) 2 3 4 5 6
All(P) 1 2 1 2 1
Example 2.
&4 =
6 x; sy B 3 26t 5 B
| 1 1 1 1 . |
/ 2 3 4 J
/'6 4 /’91 ’2 L /'? 1 2'3 o

1 L
The members are numbered from left to right and
the joints from right to left, in nice order.
N9=6

I 1 2 3 4 5 6
X1(I) ) 6.7 5 3 1.6 0
P9=5

P 1 2 3 4 5

LL(P) 5 4 3 2 1

HH(P) 6 S 4 3 2
All(P) 1 2 1 2 1

Again matrix CC with elements around the main
axis with values mirrorred w.r.t. the other
axis comparing with the results just found be-
fore.

Example 3.
X/
1_6 :5 14 'le‘*" la' |/
< 2 N 4 Ea

Like the last example but now the origin of the
X1 axis is placed at joint 3, so only the joint
coordinates must be changed.

N9=6
I 1 2 3 4 5 6
X1(1) 4 1.7 0 -2 -3.4 -5

P9=5 data like above.
The results like those of the previous example.

Example 4. With irregular numbering.

:35(;2'/1! £A4 6'7'5‘5; EA 3
'—;,:5" 3 / 2 &
L %€ A 2 . 4Z 23m
N9=6
I 1 2 3 4 5 6
X1(I) 3 9 0 6.7 1.6 5
P9=5
P 1 2 3 4 5
LL(P) 1 4 1 2 3
HH (P) 6 6 5 4 5
A1 (Py 1 2 2 1 1

And compare the places and values with the
examples 2 and 3.

)



—— Private Sub AXMAINCALC() page 22
'l. Composition of constructicn ma-
'trix CC with member matrices S5.

CONSTRMATCCAXMEMBER page 20

'2. Elements of force vector FF,

'2a. Joint load forces FX(I).

N=1*N9 o
r For I=1 To N9

A=1*1

FF(A)=FX(I)

PP(A)=PH(I)

UU(A)=UH(I)

SS(R)=SH(I)

Next I

'2b. Primary forces due to member
'loads along the member axis.
'staafas.

— For P=1 TO P9 : L=LL(P) : H=HH(P)

EA=EAA (P)

D1=X1 (H)-X1 (L)

L1=Sgr(D1~2) : L11(P)=L1

C=D1/L1

MEMBER page 15

D7(P,1)=N1*C : D7(P,2)=N2*C
Next P

'2c. Alteration of force vector FF.
For I=1 To N9 -
r_* A=1*T
For P=1 To PS : L=LL(P) : H=HH(P)
If I=L Then
FF{A)=FF(A)+D7(P,1)
Elself I=H Then
FF(A)=FF (A)+D7 (P, 2)
End If
Next P
— Next I

'3. Alteration of force vector FF
'and construction matrix CC.
'3a. Of FF in case of prescribed
'displacements <>0.
For I=1 To N
If UU(I)<>0 Then

[ For K=1 To N

FF(X)=FF(K)-CC(X,I)*UU(I)
Next K
End If
Next I

i"3b. Of FF and CC in case of pres-
'cribed displacements.
—— For I=1 To N
If PP(I)=1 Then
For J=1 To N
[-CC(I,J)=O : CC(J,1I)=0
Next J
CC(I,T)
End If
—— Next I
'3c. Of CC in case of elastic/
'sprirgv supports.
For I=1 To N
If SS(I)>0 Then _
CC(I,I}=CC(I,I)+SS(I)
Next I

1 : FF(I)=UU0(I)

I

'4. Calculation of the unknown
'displacements UH(I). °
For I=1 To N : BB(I)=FF(I)
For J=1 To N
[ AA(I,J)=CC(I,J)

Next J

Next T

'The solution of the N=1*N9
'equations.

GAUSS part 12

For I=1 To NS

A=1*1

UH(I)=XX(A)

UU (A)=XX(A)

Next T

v5_ calculation of the memberend
'forces w.r.t. construction axis X.
'53. Due to the displacements

'alone.
—_ For P=1 To P9 : L=LL(P) : H=HH(P)
EA=ERA (P)
MEMBERMATSSAXMEMBER page 21
TT(1)=1*L
TT(2)=1*H
For I=1 TO 2 : FK(P,I)=0
For J=1 TO 2 : A=TT(J)
[ FK(P,I)=FK(P,I)+S85(I,J)*UU(A)
Next J

Next I
'S5b. Due to displacements and mem-

'ber loads along the member axis.
D5(P,1)=FK(P,1)-D7(P,1)
;DS(P,2)=FK(P,2)-D7(P,2)

NAA (P,1)=D5(P,1)*C
NAA(P,2)=D5(P,2)*C
'— Next P
'6. Calculation of the joint for-
'ces KH(I).
'6a. Due to the displacements
'alomne.
; CONSTRMATCCAXMEMBER page 20
~— For I=1 To N9
A=1*T
KH(I)=0
‘For J=1 To N
KH(I)=KH(I)+CC(A,J)*UU(J)
Next J

'6b. Due to the displacements and
'member loads along the member
'axis.

— For P=1 To P9 : L=LL(P) : H=HH(P)
If I=L Then
KH(I)=KH(I)-D7(P,1)
ElseIf I=H Then
KH(I)=KH(I)-D7(P,2)

End If
Next P
Next I

'7. Calculation of the reactions.
For I=1 To N9

If SH(I)>0 Then
RH{I)=-SH(I)*UH(I)

Else

RH(I)=KH(I)-FX(I)

End If

Next I

—— End Sub

#3

D1=X1 (H)-X1(L) : L1=Sgr(D172) : C=Dl/L1



Private Sub CONSTRMATCCAXMEMBER(

N=N9 page 20
For I=1 To N For J=1 To N
CC(I,J)=0 Next J : Next I

FOR P=1 To P9 L=LL(P) H=HH (P)
EA=EAA (P)

MEMBERMAT S5AXMEMBER

TT(1)=L TT(2)=H

For I=1 To 2 I1=TT(I)

For J=1 To 2 J1=TT(2)

CC(I1,J1)=CC(I1,J1)+S5(1I,J)
Next J
Next T
Next P

- End Sub

Private Sub MEMBERMATSSAXMEMBER( )

0 D1=X1 (H)-X1 (L) page 21
L1=SQR (D1"2)
R=EA/L1
S5(1,1)=R 55(1,2)=-R
55(2,1)=-R S5(2,2)=R
- End Sub
Private Sub MEMBER({) page 15

'Calculation of the reactions due

'to member loads along the member.

N1=0 N2=0
'The concentrated loads.
For I=1 To NFA(P)

F5=F55 (P, I) L5=L55 (P, I)
N4=F5*L5/L1 N3=N5-N4
N1=N1+N3 N2=N2+N4

Next I

'The distributed loads.

For I=1 To NQA(P)

Q6=066 (P, I) L6=L66 (P, I)
Q7=Q77 (P, I) L7=L77(P,I)
F=.5*(Q6+Q7)*L7 : V3=F*L6/EA
V5=Q7*L7°2/ {2*ER)
V6=(Q7-Q6)*L7~2/ {6*EA)
V1=v3+V5-V6

N4=V1*EA/L1l N3=F-N4
N1=N1+N3 N2=N2+N4
Next T

End Sub

Private Sub N5G() page 19
'Calculation of the normal forces
'every G meter.

NA=0 L1=L11(P)

For XG=0 To L1+G Step G

If XG=0 Then

X=XG N5SXX

NA=NA+1 LA(P,NA)=X

NAL (P, NA)=N5 NAR (P, NA)=N7
Elself XG>0 And XG<=L1l Then

c2=1

For I1=1 To NFA(P)

L5=L55(P,I1)

If L5>XG-G And L5<=XG Then

X=L5 : N5XX

NA=NA+1 LA(P,NA)=X

NAL (P,NA)=N5 : NAR(P,NA)=N7

If L5=XG Then C2=0

End If

Next Il

Subroutine CONSTRMATCCAXMEMBER will be extended

in coming programmes for trusses beams and
frames, getting their suitable names.
Same for subroutine MEMBERMATS5AXMEMBER.

Subroutine MEMBER will be used in other pro-
grammes. N5G and N5XX can be applied there if

'wanted.

If C2=1 Then

\X=XG : NB5XX

NA=NA+1 : LA(P,NA)=X

NAL (P,NA)=N5 : NAR(P,NA)=N7
End If

—— ElseIf XG>L1 Then

— For I1l=1 To NFA(P)
L5=L55 (P, I1)
If L5>XG-G And L5<L1 Then!

X=L5 N5XX
NA=NA+1 LA(P,NA)=X
NAL (P, NA)=N5 NAR (P, NA)=N7
End If
— Next I1

If XG-G<Ll Then

X=L1l : N5XX

NA=NA+1 : LA(P,NA)=X

NAL (P, NA)=N5 NAR (P,NA)=N7

End If
—— End If
L—— Next XG
‘——— End Sub

NAC (P)=NA

—— Private Sub N5XX({) page 17
'Calculoation of the normal force
'at X meter from member end L.
N5=BN N7=BN
'"The concentrated loads.

— For I=1 To NFA(P)

F5=F55(P, 1) L5=L55(P, I)
If X>L5 Then

N5=N5+F5 N7=N7+F5
ElseIf X=L5 Then
N7=N7+F5

— End If

— Next I

'"The distributed loads.

For I=1 To NQA(P)

Q6=066 (P, I) L6=L66(P,I)

Q7=Q77(P, I) L7=L77(P, I)

— If X>L6 Then
If X>L6 And X<=L6+L7 Then
08=06+(Q7-Q6) * (X-L6) /L7
T=.5* (Q6+Q08) * (X-L6)

N5=N5+T : N7=N7+T

— Elself X>L6+L7
T=.5* {(Q6+Q7) *L7
N5=N5+T : N7=N7+T
End If

“— End If

—— Next I
End Sub

”
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lF/éA/
j ;
£Y . TZ
. /L L
+ = M
F*L"2/ (2*ET) Z= F*LA3/ (3%BT)
Q&
A |
1 W |
= Q*L"3/ (6*EI) 7= Q*L"4/(8*EI)

: i

I

= Q*L"3/(24*ETI) Z= Q*L"4/(30*EI)

g

= 11Q*L"3/ (120EI)

= QQLA3/(8EI)
4
M*L/EI Z= M*L"2/(2*EI}
T Y S
A D B
z| &7 =
e B
t _L = |

HA= F*a*b* (L+b)/ (6*L*EI})
HB= F*a*b* (L+a)/ (6*L*ET)

ZD= F*a*2*b"2/ (3*L*EI)

L "0 2l

I__.
HA= HB= F*L~2/(16*EI)

ZC= F*L"3/ (48*EI)

£
P —

HA= HB= Q*LA3/(24*EF)

ZC= 5*Q*L~4/(384*EI) } .

e

= Q*L"3/ (45*%ET)
HB= 7*Q*L~3/ (360*EI)

ZC= (5*Q*L"4/(38B4*EI)) /2

Standard formulas for simple beams.

E is modulus of elasticity in kN/m"2
EI is bending stiffness, EI is E*I with
I is moment of inertia in m*4
EI is (kN/m"2)*m~4 is kNm"2

EA is strain stiffness, EA is E*A with
A is cross sectial area in m"2

EA is (kKN/m"2)*m*2 is kN

Displcement Z in m, angle H in radians

1 E F=F*], /
] = FEA
@
< S i iadi Z=GELA2 f (2*ER}
A EA
o S N

iﬁk Z=Q*L 2/ (G¥ER)

4 _:*_‘:'_::j_ 2=0*L 2/ (3EI)
14
A

1 u 3 )”’
- M

D 7B

HA= M*L/ (6*ET) HB= M*L/(3*ET)

ZC= M*L~2/ (16*EI)

F——5%)
&7 e
[AV i AV

HB= M*L/ (4*EI} ZC= M*L"2/{32*EI}

AV=BV= 3=M/(2*EI}

M CE' A /'yﬂ [z

& By
| Av

MA=3*BEI*Z/ (L~2} HB= 3*2/(2*L}

AV=BV= 3J*ET*Z/(L~3] zc— M*L 2/ (32*REI}

.-
(éf//d 4”31

.ﬁI‘x—.E— G*EI*Z/ (L2}  ZC= Z/Z

AV=BV= 12*ET*Z/(L"3}

L/ﬁ*



