Part 6

The three following cases with determination

of the three different member stiffness matrices S5

for a single beam.
Determination of the elements of the three
different 4 x 4 stiffness matrices.

Beams over more than two supports, without 1 -2
vertical joint (support) displacements and
without internal hinges.
Beams over more than two supports, with 3 -11
vertical joint (support) displacements and
without internal hinges.
Beams over more than two supports, with 12-15
vertical joint (support) displacements and
with internal hinges.
Application of the three matrices with two 16-18
continuous beams, three examples with a
joint force load.
|20 4 2 4/ |27 &/
44 B, ey 214 ‘1'3 Cy A B! ay
T = Zer v 4 s& Y=g v =7 257 v
o I MRV T I N In
/ / /
—_ 2 i 2 i 2 i
Example with distibuted member/beam loads. 19-22
Example with concentrated member load forces, 23-25
and a springy support.
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Program CBEAMMATRA 26-29
Composing construction matrix CC with
member matrices S55.
Deterrmination of the S5's, matrix CC after
composition, and CC before a main calculation
of the unknows is to be carried out.
Standard formulas for simple beams/members. 30




ey TN /i*\ TN

1 1 1

o & s E93 == &893 =

| 4/ I 42 | 4'3 1

| ] | i
Ep L

(e s
MAZ “

7 £7 1784
Le
l L l
Fig4a
2
N ey

MA2 ,
4

wRB

~

\ 4

URA=MA1*L/ (4*EI)

URB=MA2*L/ (4*EI)

S, N
= ) msa
#77.2¢.

MAl=(4*EI/L) *URA
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3.1. Beams over more than two supports, with-
out vertical joint displacements and without
internal hinges.

Fig.1l.

A continuous beam on four supports. Above the
supports, which do not displace vertiacally,

are joints assumed at which the beam ends are
rigidly connected.

These joints can be indicated with short
vertical little stripes, here thus above the
supports. (Not yet joints between the beam ends,
which can displace vertically.)

The joint can rotate, undergo a rotation.

The relation between member end moments and
joint rotations of one single simple beam.

Fig.2a.

At the member ends of the from the joints sepe-
rated beam slope deflections, or rotations, can
arise.

The direction of these rotations URA and URB is
assumed to the right, as is drawn. (The joint
rotations as well are assumed to the right.)

By deformation, bending, of the beam arise mem-—
ber end moments. These moments MAB and MBA are
assumed to be directed to the right.

The beam of fig.2a can be seen as the sum of
the figures 2b and Z2c.

Fig.2b.

The beam is clamped on the right and hinged
supported on the left.

Slope deflection URA at member end A is assumed
to the right, from which follows that moment
MAl at A must be directed to the right.

By deformation of the beam arises at member end
B a moment MBIl to the right. According to the
page with formula, page 30, the slope
deflection at A due to moment MAl,

URA=MAl*L/ (4*EI). Then moment MAl is

MA1=(4*EI/L) *URA. Further is MB1=MA1/2 so that

MB1l=(2*EI/L) *URA.

Fig.2c.

In similar way one finds for this beam due to
the slope deflection to the right URB the be-
longing moments MA2 and MB2.

MA2=(2*EI/L) *URB

MB2=(4*EI/L) *URB

Now fig.2a is the sum of fig.2b and 2c so that
MAB=MA1+MA2 or MAB=(4*EI/L)*URA+ (2*EI/L)*URB
and

MBA=MB1+MB2 or MBA=(2*EI/L)*URA+ (4*EI/L)*URB.
The relation between member end moments and

joint rotations found this way is shown on the
left in matrix form.
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Fig.3a, 3b en 3c.

For a moment back to part 4 page il

The same way as just before one can find the
relation between member end forces and displa-
cements for axially loaded members.

Fig. 3a is de som van fig.3b en 3c.

Fig. 3b.

The right member end is holded. To the assumed
displacement UA to the right belongs a force
FAl to the right.

With Hooke AL=FL/EA follows UA=FA1*L/EA from
which FAl=(EA/L) *UA,
and with R=EA/L becomes FAI1=R*UA.

At B arises a to the left directed reaction
force FB1l, as large as FAl. FBI1=FAl=R*UA.

Fig.3c.

With same reasoning follow
FB2=R*UB and FA2=FBZ2=R*UB.

Adding both cases gives

FAB= FAl-FA2 or FAB= R*UA-R*UB, and

FBA= FB2-FBl1 or FBA=-FB1+FB2 so that

FBA=—R*UA+R*UB.

Fig.4.
If the construction consists of two beams then
there are two sets of equations £ = S5 u.

D1=4*EI1/L1
E1=2*EI1/L1

MAB= D1*URA + E1*URA
MBA= E1*URA + D1*URB

D2=4*EI2/L2
E2=2*EI2/L2

MBC= D2*URB + E2*URC
MCB= E2*URB + D2*URC

Joined they deliver £ = C u.
The underlined elements of both S5's coincides
in construction matrix C.

Joints and beams are seperated from each other.
On the joints act the joint load moments

MA, MB en MC, assumption to the right.

On the member ends act the member end moments
MAB and MBA for beam 1, and

MBC and MCB for beam 2, assumption to the right.
On the loosened joints act momemts as large as
but opposite directed, thus to the .left.

The elements of force vector f are found using
equilibium of joints.

¥ mom. joint A =0

MA-MAR=0 = MAB=MA
¥ mom. joint B =0
MB-MBA-MBC=0 = MBA+MBC=MB
T mom. joint C =0
MC-MCB=0 = MCB=MC

Is none of the rotations, or slope deflections,
prescribed then the unknowns URA, URB and URC
can be solved from the three equatlons Cu-=f.
(Unless there are member loads then f will be
altered first; to be dealt with later.)
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3.2. Beams over more than two supports with
vertical joint displacements and without inter-—

nal hinges.

Fig.1.

Each point of the beam can be considered as a
joint. Always above the supports, and at places
between the supports, and always at a member
end (until now).

The joints are loaded by

joint load moments, assumption to the right,
and

joint load forces, assumption downward.

Fig.Z2a.

Because joints between member ends and supports
if they displace, mostly displace downward, the
Y-axis of the construction axis system X-Y is
assumed downward.

First the relation between member end forces
and member end moments, and joint displacements
and slope deflections (translations and rotati-
ons) of one single beam.

The rotations URA and URB of the joints, and
thus of the member ends, are assumed to the
right, then also the to them belonging member
end momemts MAB and MBA.

The vertical displacements UVA and UVB are
assumed downward like the Y-axis. So are the to
them belonging vertical member end forces FAB
and FBA.

The beam of fig.2a. can be seen as the sum of
the figures 2b, 2c, 2d and Ze.

Fig.2b.
The member ends are clamped and holded after

which a displacement UVA downward is applied.
The beam deforms by it as drawn, through which
the clamp moments MAl and MBl arise, to the
right.

According to the formulas, page 30, follow !

MAl=(6*EI/L"2) *UVA and MBl=(§*EI/L"2)*UVA.

Since both moments are directed to the right
the beam can only be in equilibrium if the two
member end forces FAl and FB1l deliver a couple
of forces to the left. Then FAl is directed
downwad and FB1 'is directed upward. Their mag-
nitudes are

FAl=(12*EI/L"3) *UVA and FB1=(12*EI/L”3) *UVA.

Fig.Z2c. ] o o
As on page 1 one finds the to the slope de-
flection URA belonging member end moments,
MA2=(4*EI/L) *URA and MB2={(2*EI/L) *URA.
The member end forces deliver again a couple of
forces to the left from which their directions

folloe. And with the formulas follow

FA2=(6*EI/L"2)URA and FB2=(6*EI/L"2) *URA.
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Fig.2d.

Both member ends are clamped and holded when B
is displaced over UVB downward. Due to the
deformation/bending arise the moments MA3 and
MB3 to the left. These are

MA3=(6*EI/L"2) *UVB and MB3=(6*EI/L"2)*UVB
Due to both moments to the left arise member
end forces FA3 upward, and FB3 downward. With
the formulas follow
FA3=(12*EI/L"3) *UVB and FB3=(12*EI/L~3) *UVB.
Fig.?2e.

To the assumed slope deflection URB to the

right belong the two moments MA4 and MB4 to the
right. Their magnitudes are

MA4=(2*EI/L) *URB and MB4=(4*EI/L) *URB.
To make equilibrium with both moments to the
right, member end force FA4 must be directed
downward, and member end force FB4 directed
upward, and equal in magnitude. Like found with
fig.2c follow
FA4=(6*EI/L"2) *URB and FB4=(6*EI/L"2) *URB.
Member end forces and member end moments of
fig.2a are the resultants of the figures 2b, 2c,
2d and Ze.

First member end A with FAB and MAB.

FAB= FAl+FA2+FA4-FA3 and in nice order,
FAB= FAl1+FA2-FA3+FA4
= (lZ*EI/LA3)*UVA.+(6*EI/LA2)*URA

—(12*EI/L"3)*UVB +(6*EI/L"2) *URB.

MAB= MA1+MA2+MA4-MA3 or
= MA1+MA2-MA3+MA4

(6*EI/L"2) *UVA +

- (6*EI/L"2) *UVB +

(4*EI/L) *URA
(2*EI/L) *URB.

FBA= FB3-FB1-FB2-FB4 or
=-FB1-FB2+FB3-FB4
=- (12*EI/L~3) *UVA —(6*EI/L"2)*URA
(12*EI/L"3) *UVB - (6*EI/L"2) *URB.

MBA= MB1+MB2+MB4-MB3 or
= MB1+MB2-MB3+MB4

(6*EI/L"2)*UVA +

—-{(6*EI/L"2)*UVB +

(2*EI/L) *URA
(4*EI/L) *URB.

These equations are given on the left in matrix
form, £ = 585 u.

The elements of stiffness maytrix S5 can be in-
dicated with four letters, in conserning cases

with a minus sign.

A=12*EI/L"3 B=6*EI/L"2 D=4*EI/L E=2*EI/L

The dimensions of the slements follow with mo-
dulus of elasticity in kN/m*2, moment of
inertia I in m*4 and length L in m.

Fach element of f is equal to a row of S5 times
column u. Translations are found in m, rotati-
ons in (dimensionless)radians.
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Fig.3a.

The slope deflections of the member ends which
are rigidly connected with the joints. The
joint rotations URA and URB now are assumed to
the left. The to them belonging member end mo-—
ments MAB and MBA are then also directed to the
left.

Again four cases are considered of which fig.3a
is the resultant.

The same magnitudes for forces and moments
follow as on the preceding page, expressed in
UVA, URA, UVB, and URB, now with the letters A,
B, D and E. (C is used for Cos {inus) .)

A=12*EI/L"3 B=6*EI/L"2 D=4*EI/L E=2*EI/L
Fig.3b as fig.Z2b.

FA1=A*UVA MA1=B*UVA FB1=A*UVA MB1=B*UVA
Fig.3c not like fig.2c.

Rotations, forces and moments have directions
opposite to those of fig.Z2c.

FA2=B*URA MA2=D*URA FB2=B*URA MB2=E*URA
Fig.3d as fig.2d.

FA3=A*UVB MA3=B*UVB FB3=A*UVB MB3=B*UVB
Fig.3e not like fig.Ze.

Rotations, forces and moments have directions
opposite to those of fig.Ze.

FA4=B*URB MA4=E*URB FB4=B*URB MB4=D*URB
Then the resultants can be determinated.

FAB= FAl -FA2 -FA3 ~FA4

A*UVA -B*URA -A*UVB -B*URB

= —-MAl +MA2 +MA3 +MA4

—-B*UVA +D*URA +B*UVB +D*URB

FBA= -FBl +FB2 +FB3 +FB4

—-A*UVA +B*URA +A*UVB +B*URB
MBA= -MBl +MB2 = +MB3 +MB4

= -B*UVB +E*URA +B*UVB +D*URB
on the left the equations are given in matrix
form. The magnitudes of the elements of
stiffness matrix S5 are like those of the pre-
ceding page but the values have got an opposite
sign because the directions of forces and
moments of fig.3c are opposite to those of
fig.2c, and of fig.3e opposite to those of

fig.2e.
Now it is possible to go on consequently with
these asumptions, ofcourse..., but it is not

worked out further here.
(The joint rotations were assumed to the left,
not necessarily 'from X to Y'..., that does not

matter at all.)

e
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Another possible stiffness matrix S5.

Fig.4a.

The Y-axis is assumed upward, so the displace-
ments UVA and UVB are, and so are the to them
belonging member end forces FAE and FBA.

The joint rotations are assumed to the right,
so are the to them belonging member end moments

MAB and MBA.

With these assumptions for the displacements
UVA and UVB, and for the joint rotations URA
and URR, follow the figures 4b, 4c, 4d and 4e.
Displacement and joint rotation determine the
deformation of the beam from which the
directions of momemts and forces follow.

Fig. 4a is wqual to the sum of the figures
4b t/m Ade.

FAB= FAl -FA2 -FA3 -FA4

= A*UVA -B*URA -A*UVB -B*URB
+MA3 +MA4

= -MAl +MAZ

-B*UVA +D*URA +B*UVB +E*URB

FBA= -FB1 +FB2 +FB3 +FB4

—A*UVA +B*URA +A*UVB +B*URB

MBA= -MB1 +MB2 +MB3 +MB4

= -B*UVA +E*URA +B*UVB +D*URB

The same stiffness matrix S5 is found as on the
preceding page. The equations are the same.

Once again fig.4a but now with joint rotations
to the left, then also the to them belonging
member end moments to the left.

The direction of forces and moments of fig.4c
and 4de are then opposite directed. Then the
equations look a bit different.

FAB= A*UVA +B*URA —A*UVB +B*URB

MAB= B*UVA +D*URA -B*UVB +E*URB

FBA= -A*UVA —-B*URA +A*UVB -B*URB

MBA= B*UVA +E*URA -B*UVB +D*URB

Member matrix 85 of this case looks like that
of the first matrix of page 4

The four matrices found are given on the left.
The first and last one are egual, also the
second and the third are equal.

Now the cases 2, 3 and 4 will be 'forgotten'’
and explanation goes further with the first
relation found.

(By the way, there are more possibilities with
different assumptions, but rather difficult to
be maintained.)
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Fig.5.

If the construction consists of two beams, two
members, then there are two sets of equations,
f =85 u.

Member A-B with elements Al, Bl, D1 and El, and
member B-C with A2, B2, D2 and E2.

They are placed in the siffness matrices 55
with a minus sign when needed.

Both sets of equations can be composed to a
single set £ = CC u.

Both S5's are put in CC, here with joint ordex
B, C and B, a possibility, see next page. Writ-
ten CC instead of C; CC is used in the code.
The underlined elements of the S85-s coincide in
construction matrix CC.

FBA= ~A1*UVA -B1*URA +Al*UVB —-B1*URB
FBC= A2*UVB +B2*URB —-A2*UVC +B2*URC
FBA+FBC= (Al+A2)*UVB +(-B1+B2) *URB

—-A2*UVC +B2*URC

-A1*UVA -B1*URA and so on.

The member end forces FAB, FBA, FBC and FCB are
assumed downward. On the seperated joints act
forces as large as but bopposite directed, so
directed upward.

The on the member end acting member end moments
MAB, MBA, MBC and MCB are assumed to the right.
On the seperated joints act moments as large as
but opposite directed, so to the left.

On the joints act joint load forces FYA, FYB
and FYC, assumed direction downward,

and joint load moments MZA, MZB and MZC,
assumed direction to the right.

To be able to solve the set of equations

cC u = f the force vector is filled with joint
load forces and joint load moments, which fol-
low from equilibrium of the joints.

% vert. joint B =0 — —

FYB-FBA—~-FBC=0 = FBA+FBC =| FYB

% mom. joint B =0

MzB-MBA-MBC=0 = MBA+MBC =| MZB

% vert. joint C =0

FYC-FCB=0 = FCB =| FYC

¥ mom. joint C =0

MZC-MCB=0 = MCB =| MzC

% vert. joint A =0

FYA-FAB=0 = FAB =| FYA

£ mom. joint A =0

MZA-MAB=0 = MAB =l MZA
f
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Example.

Fig.1.

The on both ends clamped beam is loaded by a
force of 18 kN. Member end 1 or member end 2
can displace horizontally.

The construction is divided into two beams/mem-
bers and three joints.

) A B -A B ] A=12*EI/L"3
B D -B E a B= 6*EI/L"2
-A -B A -B | D= 4*EI/L
B E -B D J E= 2*EI/L

) S5

By using the formulas found earlier the ele-
ments of the member stiffness matrices are de-
terminated.

Beam 1 with L=4 m and bending stiffness EI.
A=12*EI/473=0,188EI B=6*EI/472=0,375ETI
D= 4*EI/4 =1,000EI E=2*EI/4 =0,500EI

Beam 2 with L=2 m and bending stiffness EI.
A=12*EI/273=1,500EI B=6*EI/272=1,500ETI
D= 4*EI/2 =2,000EI E=2*EI/2 =1,000EI

In the S5-s these values are multiplied by
1000/EI so that S5 has to be multiplied by
EI/1000.
Both sets of equations f = S5 u are composed to
the set £ = CC u. The underlined elements of
the S5-s coincide in construction matrix CC.
All joint load forces and joint load moments
are zero except FY2=18 kN.
With vertical equilibrium of joint 2 follows
FY2-F21-F23=0 so that F21+4F23=FY2 is 18 kN,
the third element of the force vector.
The vertical displacements UVl and UV3, and the
joint rotations URl and UR3 are prescribed and
all equal zero. The concerning rows and columns
of matrix CC are made zero, but the diagonal
elements become 1.
Two equations remain,

(EI/1000) (1688UV2+1125UR2)=18 and

(EI/1000) {1125UV24+3000UR2)= 0 from which follow
Uv2=14,2/EI and UR2=-5,33/EI.
The beam end forces and momemts of beam 1:
UvV1l=0 and UR1=0.
F12=(EI/1000) (-188(14,2/EI)+375(-5,33/EI))

=(EI/1000) (-2670/EI-1999/EI)=-4,67 kN
M12=(EI/1000) (-375(14,2/EI)+500(-5,33/EI))
=(EI/1000) (-5325/EI-2665/EI)=-7,99 kNm
F21=(EI/1000) ( 188(14,2/EI)-375(~5,33/EI))
= 4,67 kN
M21=(EI/1000) (-375(14,2/EI)+1000(-5,33/EI))

=-10, 66 kNm
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The beam end forces and moments of beam 2.
UV3=0 and UR3=0.
F23=(EI/1000) ( 1000(14,2/EI)+1500(—5,33/EI)

= 13,31 kN

M23=(EI/1000) ( 1500(14,2/EI)+2000(-5,33/EI)
= 10,64 kNm

F32=(EI/1000) (-1500(14,2/EI)-1500(-5,33/ET)
=-13,31 kN

M32=(EI/1000) ( 1500(14,2/EI)+1000(-5,33/ET)
= 15,97 kNm

Fig.Z2a.

On the beam ends act according assumption down-
ward durected forces FAB and FBA, and according
assumption to the right directed beam end mo-
ments MAB and MBA.

On the seperated joints act forces and moments
as large as but opposite directed, forces up-
ward and moments to the left.

Fig.2b.

Oon the joints act vertical joint forces KVI,
Kv2 and KV3, assumption upward, and the joint
moments KM1, KM2 and KM3, assumption to the
left.

These joint forces and joint moments form the
elements of force vector £ = CC u. Such an
element is equal a row of the original con-
struction matrix CC times column u.

KV1=F12 =— 4,67 kN

KM1=M12 =- 7,99 kNm

KV2=F21+F23= 4,67+13,31= 17,98 kN
KM2=M21+M23=-10, 66+10, 64 O kNm
KV3=F32 =-13,31 kN

KM3=M32 = 15,97 kNm

Fig.2c.

On the joints also act

joint load forces FY1l, FY2 and FY3, according
assumption downward, and the

joint load moments Mzl, MZ2 and MZ3, according
assumption directed to the right.
FYl=0 FY2=18,00 kN FY3=0 Mz1=0
Fig.2d.

For each joint a vertical reaction is assumed,
RV1, RV2 and RV3, assumption upward, and reac-—
tion moment, RM1, RM2 and RM3, assumption to
the right.

Mz2=0 MZ3=0

Fig.2b, 2c and 2d.

% vert. joint 1 =0 RV1+KV1-FY1=0
RV1=—KV1+FYl= - (-4,67)+0= 4,67 kN

% mom. joint 1 =0 RM1-KM1+MZ1=0
RM1= KM1-MZl= -7,99-0= -7,99 kNm

% vert. joint 2 =0 RV2+KV2-FY2=0

RV2=-—KV2+FY2=-17,98+18,00= 0O kN
£ mom. joint 2 =0 RM2-KM2+MZ2=0
RM2= KM2-MZ2= O - 0 = 0 kNm

£ vert. joint 3 =0 RV3+KV3-FY3=0
RV3=-KV3+FY3=-(-13,31)+0 = 13,31 kN

¥ mom. joint 3 =0 RM3-KM3+MZ3=0
RM3= KM3-Mz3= 15,97 -0 = 15,97 kNm

Fig.3.

The reactions are drawn with their real direc-
tions. The whole is in equilibrium.

9
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3.3. Primary forces and moments due to loads
perpendicular to the beam axis.

Fig.la.

Starting point is the beam clamped at both ends
with the given assumed directions of the beam
loads and rections, and the assumed place of
the beam axis system at beam end A.

The reactions due to the loads are the forces
Rl and R2 and the moments M1 and M2.

On the separated joints act forces and moments
as large as but opposite directed.

Fig.1lb.

The loads on the beam deliver on the joints ac-
ting primary forces FPAB and FPBA with an
assumed direction like that of the joint load
forces FYA and FYB, that is downward.

Also arise the on the joints acting primary mo-
ments MPAB and MPBA with an assumed direction
like that of the joint load moments MZA and MZB,

that is to the right.

Fig.la and 1b.

At joint A.

FPAR= R1 FPAB and Rl have the same direction.
MPAB= M1 MPAB and M1 have the same direction.

At joint B.

FPBA= R2 FPBA and R2 have the same direction.
MPBA=-M2 MPBA and M2 are opposite directed, so
the minus sign is needed to indicate that.
First force vector f is filled with joint load
forces and joint load moments, after that the
primary forces will be added.

For joint A with FYA+FPAB=FYA+R1 and
MZA+MPAB=MZA+M1.
For joint B with FYB+MPBA=FYB+R2 and

MZB+MPBA=MZB+ (-M2) .
(Plus eventual primary forces and moments left
of A and/or right of B in case of a continous
beam.)

Fig.lc.

The beam end forces FABY and FBAY are

according assumption directed downward. (The
letter Y indicates only! that they are vertical
forces. One could have assumed them to be
directed upward.)

The beam end moments MAB and MBA are assumed
directed to the right.

These beam end forces and moments are first
calculated due to the displacements alone,
translations and rotations of the joints.

When there are beam loads then the primary for-
ces and primary moments must be added to get
the final beam end forces and beam end moments.
See fig.lb for the assumed directions of FPAB,
MPAB, FPBA and MPBA.

FABY becomes FABY-FPAB=FABY-R1
MAB becomes MAB-MPAB= MAB-M1

FBAY becomes FBAY-FPBA=FBAY-R2
MBA becomes MBA-MPBA= MBA- (-M2)

/0
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Fig.Z2a.

One can also place the beam axis system |~ at
beam end B.

Then arise at B the reactions Rl and M1 and at
A the reactions R2 and M2.

R1 and R2 are now directed downward.

Like fig.la is M1 directed to the left,

and M2

to the right.
On the joints act forces and moments as large

as but opposite directed.

Fig.2b.

The assumption for the direction of the on the
joints acting forces FPAB and FPBA is like

fig.1lb downward,

and of the primary moments

MPAB and MPBA also no on the joints to the
right. Their magnitudes are the calculated
reactions R2, R1, M2 and MI.

Fig.2a and 2b.

At joint A.

FPAB=-R2
MPAB=-M2
At joint
FPBA=-R1
MPBA= M1

B

FPAB and R2 are opposit directed.
MPAB and M2 are opposit directed.

FPBA and R1 are opposit directed.
MPBA and M1 have the same direction.

Force vector f is now filled with joint load

forces and moments,

moments.

For joint A with

For joint B with

and primary forces and

FYA+FPAB=FYA+ (-R2) and
MZA+MPAB=MZA+ (-M2) .
FYB+FPBA=FYB+ (-R1) and

MZB+MPBA=MZB+M1.

At last follow the final beam end forces and

moments.

FABY becomes FABY-FPAB=FABY- (-R2)
MAB becomes MAB-MPAB= MAB- (-M2)
FBAY becomes FBAY-FPBA=FBAY- (-R1)
MBA becomes MBA-MPBA= MBA-M1

The beam end forces w.r.t. member axis y.

 Fig.3a.
'The lowest member end number L is assumed at A,

the highest member end number H at B. The beam
axis system [T is placed at A (later it cam be
placed at B as well.)

(The member axis system

% 1s always placed at

the lowest member end number.)
The member end forces FABy and FBAy are assumed
downward, like the y-axis.

D1=X1 (H)-X1 (L)

Now are

L1=SQR(D172)=D1 (C=D1/Ll1=+1

FLHy= FLHY-C and FHLy=FHLY - C.

C is positief so that FLHy and FHLy are direc-
ted downward like FLHY and FHLY.

Fig.3b.

L and H are exchanged.

{(Now A is H and B is L.)

The member axis system is again placed at L.
FLHy and FHLy are now directed upward accor-
ding to the member axis y.

D1=X1 (H) -X1(L)

Now are

L1=SQR(D172)=D1 C=D1/Ll=-1

FLHy= FLHY-C and FHLy=FHLY-C.

C is negative so that FLHy and FHLy are not
directed upward but downward like FLHY and FHLY.

/7
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3.4, Beams over more than two supports with

. vertical joint displacements and with inter-

nal hinges.

Fig.la.

Until now it was assumed that the beam ends
were rigidly connected with the joints.

The beam delivers resistance against the
vertical joint displacements and joint rota-
tions. The belonging beam stiffness matrix was

found on page 9.

Fig.1lb.

In case of an internal hinge the concerning

beam end is hingy connected with the joint. Now

there are three possibilities.

1) Beam end A is hinged connected with the ad-
joining joint.

2) Beam end B is hinged connected with the ad-
joining joint.

3) Beam ends A and B are hinged connected with
the adjoining joints.

The resistance of these beams against Jjoint

displacements and joint rotations is smaller

than that of a beam of which both beam ends are

rigidly connected with the adjoining joints.

Each ofv these three member has an own beam

stiffness matrix S85.

1) Beam end A is a hinge.

Fig.2a.
The assumptions are like those of fig.2a of
page 3 . There's no joint rotation URA

because of the hinge.

Slope deflection HAB, assumption to the right,
shall be calculated seperatedly after calcula-
tion of UVA, UVB and URB.

Fig.2a can be seen as the sum of the figures
2b, 2c and 2d.

Fig.2b.

If the beam en on the right is holded and A is
displaced over UVA downward, then arises at B a
clamp moment MBl to the right.

The formulas on page 3o give

MB1l=(3*EI/L"2) *UVA

From equilibrium follows a reaction FAl at A
downward, and a reaction FB1l at B upward.

FAl=(3*EI/L"3) *UVA en FB1=(3*EI/L"~3)*UVA.

At beam end A arises a slope of deflection

HAl to the left, HAl=(3/(2*L))*UVA,

Fig.2c.

If one holds beam end A at its place and is the
clamped beam end B is displaced over UVB down-—
ward then arises momemt MB3 to the left.

MB3=(3*EI/L"2) *UVB MA3=0 Further arise

FA3=(3*EI/L"~3) *UVB and FB3=(3*EI/L"3) *UVB.

At beam end A arises a slope of deflection
HA2 to the right, HA3=(3/(2*L))*UVB.

/2
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Fig.2d.

This beam is statically determinate supported.
Is a slope deflection URB to the right applied
at B then belongs to it a moment MB4 to the
right. The formula, page 30 , gives

URB=(MB4+*L) / (3*EI) so that MBd=(3*EI/L)*URRB.

At A arises reaction FA4 downward, and
at B arises reaction FB4 upward so that they
together make equilibrium with MB4.

FA4=(3*EI/L"2) *URB and FB4=(3*EI/L"2) *URB.

At beam en A arises a slope HA4 to the left
which is half as large as URB,

Beam end forces and beam end moments of fig.2a
are the resultants of the figures 2b, 2c and 2d.
One! of the figures is not drawn, the beam like

fig.2d but without slope deflection URA so that
FA2=0, MA2=0, FB2=0 en MB2=0.

First beam end A with FAB and MAB.
FAB= FAl1+FA2-FA3+FA4

= (3*EI/L"3)*UVA + 0 *URA
- (3*EI/L"~3)*UVB + (3*EI/L"2)*URB

The left beam end is a hinge, MAB=0.
= Q0*UVA + 0*URA + 0*UVB + 0*URB

Then beam end B with FBA and MBA.
FBA=-FB1+FB2+FB3-FB4

=-(3*EI/L"3)*UVA + 0 *URA
+(3*EI/L”*3)*UVB — (3*EI/L"2)*URB

The right beam end is no hinge!
MBA= MB1l+MB2-MB3+MB4

= (3*EI/L"2)*UVA + 0 *URA
-(3*EI/L~2)*UVB + (3*EI/L) *URB

The equations are given on the left in matrix
form, £ = 85 u.

The elements of S5 can be indicated with three
letters.

A=3*EI/L"3 B=3*EI/L"2 D=3*EI/L

Joint rotation URA on the left of the hinge
does exist but delivers nothing for the
elements of force vector f£. The second column

of 85 gives then four times O*URA.

The slope deflection at the hinged beam end A
is HAB, assumption to the right, see fig.Z2a.

HAR=-H1+HA2+HA3-HA4

=-1,5*UVA/L + O*URA
+1,5*UVB/L - URB/2 or

HAB= 1,5* (UVB-UVA) /L-URB/2.

/3



2) Beam end B is a hinge.

(v Fig.3a.
'BL Assumptions again like those of fig.Z2a, page
)JMKRA In this case slope deflection HBA, assumption

to the right, does not equal the joint rota-
tion URB of joint B to which the hinge is con-

A nected.
Slope HBA is seperatedly calculated.
o Fig.3b.
/5@?-56& Due to displacement UVA arises at A reaction

MA1l to the right.
— MAl=(3*EI/L"2} *UVA

The reactions FAl and FBl become
FAl=(3*EI/L"3) *UVA and FB1=(3*EI/L"3) *UVA.

And slope HB1 is HB1=1,5*UVA/L.

3
VRN
5\

Fig.3c.
T;Qg/ To roatation URA belongs MA2 to the right.
/':,4/ URA= (MA2*L) / (3*EI) so that MA2=(3*EI/L) *URA.
s Jké And the reactions FA2 and FB2 become
~+ j ) FA2=(3*EI/L~2)*URA and FB2=(3*EI/L"2) *URA.

And slope HB2 is HB2=URA/2.

”/% ( é{M /5’82/ Fig.3d.

Due to UVB arises at A moment MA3 to the left,
MA3=(3*EI/L"2) *UVBE and FA3 at A and FB3 at B.

42 FA3=(3*EI/L"~3)*UVE and FB3=(3*EI/L"3) *UVB.

Further is slope HB3=1,5*UVB/L.

The fourth case, like fig.3c but now with URB=0,
gives FA4=0, MA4=0 and MB4=0, and HB4=0.

T Fig.3a is equal the sum of the figures 3b, 3c
F43 and 3d (and 3e not drawn).
FAB= FAl1+FA2-FA3+FA4
= (3*EI/L~3)*UVA + (3*EI/L"2)*URA
-(3*EI/L"3)*UVB + 0 *UURB
3EI/L*"3 3EL/L"2 -3EI/L"3 0 1 MAB= MAl+MA2-MA3+MA4
|, = (3*EI/L"2)*UVA + (3*EI/L) *URA
3EI/L"2 3EI/L -3EI/L"2 0 | -{3*EI/L"2)*UVB + 0 *URB
-3EI/L"3 -3EI/L"2 3EI/L"3 0 ‘ FBA=-FB1-FB2+FB3+FB4
=—(3*EI/L"3)*UVA — (3*EI/L"2)-*URA
0 0 0 0 | +(3*EI/L"3)*UVB + 0 *URB
MBA= 0*UVA + O*URA + 0*UVB + O*URB
_ _‘ — = W
FAB A B -A 0 rUVA See on the left how beam matrix S5 looks like.
Again the elements can be indicated by letters,
MAB ‘ B D -B 0 URA now A,B and D.
= .
FBA ’ -A -B A 0 | UVB A=3*EI/L"3 B=3*EI/L"2 D=3*EI/L
|MBAJ 0 0 0 0 LURB The slope at beam end B is HBA, assumption to
= — = - the right.
£ S5 u HBA=-HB1-HB2+HB3+HB4
) L =-1,5*UVA — URA/2

+1,5*UVB + O*URB or

HBA= 1,5* (UVB-UVA)-URA/2.

%4
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Beam ends A and B are hinges.

Fig.4.

Slope deflection HAB at beam end A and slope
deflection HBA at beam end B are seperatedly
calculated.

It is assumed that UVB is larger than UVA,
Length L is large compairing with UVB-UVA, then
the tangent of angle HAB is (UVB-UVA)/L equal
to angle HAB.

HAB= (UVB-UVA) /L and HBA= (UVB-UVA) /L.

The elements of beam stiffness matrix S5 are
all zero.

Due to the displacements UVA and UVB alone! do
not arise beam end forces and beam end moments.

Primary forces and primary moments due to beam
loads perpendicular to the beam axis.

Fig.5.

With the assumed beam axis sytem at A the
reactions R1,R2, M1 and M2 are calculated with
the subroutines, see part 8,

BEAM1 () page 1, or
BEAM2 () page 4, or
BEAM3 () page 7.

Thesé reactions deliver their contribution
to force vector f, and to the final beam end
forces and beam end moments as shown on page
8 to 11.

The final slope deflections at the hinged beam
ends.

Fig.6a and figures 5.

The beam axis system |~ is placed at A.

With the mentioned subroutines are calculated
slope deflection Hl1 at A, and

slope deflection H2 at B.

To these are added the slope deflections due to
only the displacements, displacements alone.

a) Beam end B is a hinge, preceding page.

HBA becomes HBA=H2+1,5%* (UVB-UVA)/L-URA/2.
b) Beam end A is a hinge, see page )

HAB becomes HAB=H1+1,5*(UVB—UVA)/L—URB/Z.
c) The beam ends A en B are hinges.

HAB becomes HAB=H1+(UVB-UVA)/L and

HBA becomes HBA=H2+ (UVB-UVA) /L.

Fig.6b and figures 5.
The beam axis system_l\/ is placed at B.

a) Beam end B is a hinge.

HBA becomes HBA=H1+1,5%(UVB-UVA)/L-URA/2.
b) Beam end A is a hinge.

HAB becomes HAB=H2+1,5%* (UVB-UVA)/L-URB/2.
c) Beam ends A en B are hinges.

HAB becomes HAB=H2+ (UVB-UVA)/L and

HBA becomes HBA=H1+ (UVB-UVA) /L.

When considering horizontal beams one shall
usually place the beam axis system at the beam
end on the left. But what is 'left' when consi-
dering e.g. frames? Then the place of the beam
axis system is placed at one of the beam ends
which is indicated by a beam array variable for
the program. Chosen the place, one knows how
the beam data have to be put in.

/5
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EX2 CBEAMMAT page 26 - Fig.1.
r A B -A B A 0 -A B
B D -B E 0 0 Q0 0]
-A -B A -B -A 0 A -B
B E -B D B 0 -B DJ
S51 page & 852 page /3
o _ -~ =
FAB 444 667 —444 667 UVA |
i
MAB 667 1333 -667 667 URA
FBA -444 -667 444 -667 UVB
MBA 667 667 -667 1333 |URB
S51
times EI/1000
FBC 48 0 -48 240 FUVBW
MBC 0 0 0 0 URB
FCB -48 0 48 240 \ uve
MCB 240 0 =240 12OOJ URC
$52
444 667 —-444 667 0 0 rUVA
667 1333 -667 667 0 0 URA
-444 —-667 492 -667 -48 240 UVB
667 667 :§§7 1333 0 0| URB
|
0 0 -48 0 48 -240 uve
0 0 240 0 =240 1200 URC
CC
1 0 0 0 0 O UVA 0
0 1 0 0 0 O URA 0
0 0 492 -677 0 O UVB 24
0 0 =667 1333 0 O URB 0
0 0 0 0 1 0 uve 0
0 0 0 0 0 1 URC 0
cc u £

Example.

Fig.1.

At B the beam has as internal hinge. The
construction is divided into two beams, or
members, and three joints.

Just left of the hinge is assumed a joint, the
vertical short little stripe. This is one
possibility, after this example follow another
two.

All joint load forces and joint load moments
are zero except joint load force FYB= 24 kN.

Beam 1 with L=3 m and bending-stiffness EI.
The beam ends are rigidly connected with the
joints. Then applies stiffness matrix S51.

A=12*'EI'/L"~3=12*EI/3"3=0,444EI
B= 6*'EI'/L"2= 6*EI/3"72=0,667EI

D= 4*'EI'/L=4*EI/3=1,333EI
E= 2*'EI'/L=2*EI/3=0,667EI

Beam 2 with L=5 m and bending-stiffness 2EI.
Het linker staafeind is een scharnier, dan
geldt matrix 852.

A= 3*'EI'/L"3=3*2EI/5"3=0,048EI
B= 3*'EI'/L"2=3*2EI/5"2=0,240EI
D= 3*'EI'/L =3*2EI/5 =1,200EI

Like on page 7/9 the elements of S$51 and S52
are placed in ‘construction matrix CC. The
underlined elements coincide in CC, and are
added.

The displacements UVA and UVC, and the rotati-
ons URA and URC are prescribed and equal zero.
One finds CC u = £ of which the third element

is 24 kN is. There are two equations left.

(ET/1000) ( 492UVB- 667URB)=24
(EI/1000) (-667UVB+1333URB)= 0 from which

UVB=151,4/EI and URB=75,8/EI.
Now the beam end forces and beam end moments
can be calculated.

FAB=(EI/1000) (-444 (151,4/EI)+667(75,8/EI))
=(EI/1000) (-16663/EI)=-16,7 kN

MAB=(EI/1000) (-667 (151, 4/EI)+667 (75,8/EL))
=(EI/1000) (-50425/EI)=-50,4 kNm

FBA=16,7 kN

MBA=(EI/1000) (-667{151,4/EI)+1333(75,8))
=(EI/1000) (-57/EI)=-0,057~ 0 kNm

FBC=(EI/1000) (48(151,4/EI)+0(75,8/EI)= 7,3 kN
MBC= 0 kNm

FCB=-48*UVB + O0*URB=-7,3 kN

MCB=240*UVB + O0*URB=36,3 knM

Slope HBC at beam end B of member 2 is sepera-
tedly calculated, see page /3.

HBC=1, 5 (UVC-UVB) /L-URC/2
=1,5(0-151,4/EI) /5-0/2=-45,4/EI

/6
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A B -A 0 : A B -A B
B D -B 0 B D -B E
-A -B A 0 -A -B A =B
0 0 0 0 B E -B D
s51 page /¢ S$52 page
FAB 111 333 -111 0 FUVA
MAB 333 1000 -333 0 URA
FBA -111 -333 111 0 UVB
MBA 0 0 0 0 URB}
551
times EI/1000
FBC 192 480 -192 480 UVB
MBC 480 1600 -480 800 URB
FCB -192 -480 192 -480 uve
MCB 480 800 -480 1600 URC
552
111 333 -111 0 0 0 UVA
333 1000 -333 0 0 0 URA
-111 -333 303 480 -192 480 UVB
0 0 480 1600 -480 800 URB
0 0 -192 -480 192 -480 uvce
0 0 480 800 -480 1600 URC
CcC
- _ _ -
1 0 0 0 0 0O UVA 0
0 1 0 0 0 0 URA 0
0 © 303 480 0 0 UVB 24
0 0 480 1600 0 0 URB 0
0 O 0 0 1 0 uve 0
0 O 0 0 0 1 URC 0
cc u £

Fig.2.

The same beam construction. Now not left of the
hinge but right of the hinge jolnt B is assumed.
The right beam end of beam 1 is a hinge, to
this member belongs beam stiffness matrix S$51
shown on the left.

Beam 1 with L=3 m and bending-stiffness EI.
3*'RI'/L~3=3*EI/373=0,111EI

3*'EI'/L"2=3*EI/372=0,333EI
3*'EI'/L =3*EI/3 =1,000EI

A=
B
D=

Beam 2 with L=5 m and bending stiffness 2EI.
Now applies matrix S52.

A=12*'EI'/L~3=12*2EI/5"3=0,192EI
B= 6*'EI'/L"2= 6*2EI/5"2=0,480EI

4*'EI'/L=4*2EI/5=1, 600EI
2*'EI'/L=2*2EI/5=0,800EI

D=
E=

Construction matrix CC is formed and f = CC u
is transformed into CC v = f.

Again two equations remain.

(EI/1000) (303UVB+ 4B0URB)=24

{(EI/1000) (480UVB+1600URB)= 0 from which

UVB=150,8/EI en URB=-45,2/EI.

This UVB=150,8/EI is the same as UVB=151,4/EI
of the preceding calculation, a little diffe-
rence because of rounding.

Joint rotation URB=-45,2/EI is the on the pre-
ceding page separately calculated slope
HBC=-45,4/EI. Next the beam end forces and beam
end moments.

Zero multiplications are also now omitted. One
finds values as on the preceding page.

FAB= (EI/1000) (-111(150,8/EI))=-16,7 kN

MAB= (EI/1000) (-333(150,8/EI))=-50,2 kNm
FBA=(EI/1000) { 111(150,8/EI))= 16,7 kN
because of the hinge.

MBA=0

FBC=(EI/1000)(192(150,8/EI)+480(~45,2/EI))
=(EI/1000) (-7258/EI)=-7,3 kN .

MBC=(ET/1000) (480 (150,8/EI)+1600(-45,2/EI))
=(EI/1000) (-64/EI) = 0 kNm

FCB=(EI/1000) (-192(150,8/EI)-480(-45,2/EI))
=(EI/1000) (7258/EI) = —7,3 kN

MCB=(EI/1000) (480(150,8/EI)+800(~45,2/EI))
=(EI/1000) (36224/EI)=36,2 kNm

Slope HBA at beam end B of beam 1 is seperated-
ly calculated.

HBA=1,5* (UVB-UVA) /L-URA/2
~1,5%(150,8/EI-0)/3-0/2=75,4/EI

This slope was before joint rotation
URB=75,8/EI.
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A B -A 0 A O -A B
B D -B O 0o o0 0 O
-A -B A 0 -A 0 A -B
0 0 0 0 B 0 -B D
551 page 552 page
FAB 111 333 -111 0 UvA
MAB 333 1000 -333 0 URA
FBA -111 -333 111 0 UVB
MBA 0 o 0 0 URB!
S51
times EI/1000
FBC 48 0 -48 240 UVB
MBC 0 0 0 0 URB
FCB -48 0 ag -240 | |wveC
MCB L 240 0 -240 1200 J URC
$52
F 111 333 -111 0 0 o| [oval
333 1000 -333 O 0 0 URA
-111 -333 159 0 -48 240 UVB
0 0 0 0 0 0 URB
0 0 -48 0 48 -240 uve
0 0 240 0 -240 1200 URC
cc
1 0 0 0 0 0 ’ UVA 0
0 1 0 0 0 O URA 0
0 O 159 0 0 0| UvB 24
0 0 0 0 0 ol |UrB 0
0 O 0 0 1 0 uvce 0
0 0 0 0 0 1 URC 0
cC u £

Fig.3.

Once again the same construction. Now the hinge
itself is the 'joint', but it is not a real
joint because no joint rotation URB is/can be
calculated.

But the hinge can be loaded with a 'joint' load
force FYB= 24 kN, but not with a 'joint' load
moment MZB!

The beam matrices S51 and $52 were found before
and copied and placed in construction matrix CC.
The four underlined elements of S51 and S52 are
added and form the the four underlined elements
of matrix CC.

Force vector f£ is filled with joint load forces
and joint load moments, they are all zero
except FYB= 24 kN which becomes the third ele-
ment of force vector f.

From f=CCu to CCu=fon behalf of the
solution of the unknowns with subroutine
GAUSS , one more time as follows.

Is displacement UVA prescribed then the first
row and first column of matrix CC are filled
with zeros and is the element on the main
diagonal made one with CC(1,1)=1, and gets the
first element of f the value of displacement
UVA. Is the prescribed displacement unegqual
zero then all elements of g_will change,

and so in the same way for

URA, second row and second column,
uvc, fourth row and fifth column, and
URC, sixth row and sixth column.

By summing the underlined elements of 851 and
$52 the diagonal element CC(4,4) has become
zero. (With trusses there will never arise a
zero on the main diagonal.
851(3,3)+552(1,1)=111+48=159=C(3,3)

§51(3,4)+852(1,2)= 0 + 0= 0 =C(3,4)
S51(4,3)+852(2,1)= 0 + 0= 0 =C(4,3)
S51(4,4)4852(2,2)= 0 + 0= 0 =C(4,4)

To be able to solve the six equations with
GAUSS this fourth element has to be made 1,
C(4,4)=1., The fourth element of f is made zero
so that 1*URB=0, but! URB does not exist!

Here below without GAUSS. There's only one

equation left.
(EI/1000) (159UVB)=24 from which UVB=150, 9/EI.
Slope HAB at beam end B of beam 1, and

slope HBC at beam end B of beam 2 are
separately calculated. )

HBA=1, 5* (UVB-UVA) /L-URA/2
=1,5*(150,9/EI-0)/3-0/2=_75,5/E1
HBC=1, 5* (UVC-UVB) /L-URC/2

=1,5*(0-150, 9/EI)/5-0/2=-45,3/EI

and HBA= 75,4/EI page
and HBC=-45,4/EI page

URB= 75,8/EI page
URB=-45,2/EI page
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FAB | ‘ 21 0 -21 111 | |UvA
MAB | i 0 0 0 0 URA
FEA | | -21 0 21 -111 UVB
MBA | | 111 0 -111 577J URB
S51
times EI/1000
FBC 732 1172 -732 0 UvVB
MBC 1172 1875 -1172 0 URB
FCB -732 -1172 732 0 uve
MCB 0 0 0 0 LpRc
552
21 0 —-21 111 0 o UvA
0 0 0 0 0 0 URA
[ 21 0o 754 1061 -732 0 UVB
111 0 1061 2452 -1172 0 URB
O 0 -732 -1172 732 O Uve
0 0 0 0 0o 0 URC
cc
_ S _
1 0 O 0 o 0of|uva 0
0 0 .0 0 0 0| Ura 0
0 0 1 0 0 o0l|UvB 0
0 0 0 2452 -1172 0 || URB 45,90
0 0 0 -1172 732 0 ||UvVC 9,00
0 0 0 0 0 0 ||TRC 0
cc n £

Example.

Fig.1l.
A statically determinate overhanging beam.

A and C are hinges and B a real joint.
‘ A 0 -A B—’ A B -A O l
0 0 0 0 B D -B 0
-A 0 A -B -A -B A 0
B 0 -B D 0 0 -0 0
| g L
§51 page /A2 552 page 4

Beam 1 with L1=5,2 m and bending-stiffness EI.

A= 3*'EI'/L1~3=3*EI/(5,2"3)=0,021EI
B= 3*'EI'/L172=3*EI/(5,272)=0,111ET
D= 3*'EI'/L1 =3*EI/{5,2) =0,577EI

Beam 2 with Ll=1,6 m and bending stiffness EI.

A= 3*'EI'/L1~3=3*EI/(1,6"3)=0,732EI
B= 3*'EI'/L172=3*EI/(1,672)=1,172EL
D= 3*'EI'/L1 =3*EI/(1,6) =0,577EI

Construction matrix CC is formed and f = CC u
is transformed into CC u = f.

The elements of force vector f.

Fig.2.

There are no joint load forces, but primary
forces and moments due to the beam loads.

Beam 1. The left end is a hinge. The right end
is a real joint which is fixed after which the
distrubuted load of 15 kN is applied. The reac-
tions can be found with BEAM2 of BEAMPROGRAMI .
Or with the formulas of page 30 -

R1=(3/8) *15*5,2= 29,25 kN

R2=(5/8)*15*5,2= 48,75 kN

M1=0 and M2=(1/8)*15*5,272= 50,70 kNm.

Beam 2. Now the left end is fixed and right end
is a hinge.
R1=(5/8)*15*1,6= 15,00 kN
R2=(3/8)*15*1,6= 9,00 kN
M1=(1/8)*15%*1,6"2= 4,80 kNm and M2=0.

The reactions of the two beams are drawn with
their real directions, at the beam ends.

On the next page will be shown how the the for-
ce vector gets its values, already given below.

FYA

FAB 29,25
MAB MZA 0]
FBA+FBC FYB 63,95
MBA+MBC MZB | -45,90
FCB FYC 9,00
MCB MZC 0

only displacement/rotation URB of joint B and
the vertical displacement UVC of joint C are
the unknowns to be calculated. The two eguati-
ons to be solved then become

(EI/1000) ( 2452URB-1172UVC=-45,90 and

(EI/1000) (-1172URB+ 732UVC= 9,00.
Solution with program GAUSS

URR= -54,7/BI and UVC=-75,3/EI.
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Determination of the elements of the
force vector f.

The primary forces and moments acting
on the beam ends are drawn with their
real directions. On the joints act
forces and moments equal in magnitude
but coposit directed.

The joint load forces are assumed to
act downward, the joint lecad moments to
the right. See page

The beam end forces and moments to be
calculated are drawn with their assumed
directions.

/85 ex ) ez

‘Tfj Y (k o3
FAQZS 4@;&

BRI 4 v

/7A8

G 2

£AD B4

Joint A.  EYA= 29,25 kN
¥ vert.=0 FYA-FAB=0 FAB=FYA
MZA=0
S mom.=0 MZA-MAB=0  MAB=MZA
FrB3
7 M.

565Z5

(D (el

fvA FBC 4075 /oo
Joint B. FYB= 48,75+15,00= 63,75 kNm

Z vert.=0 FYB-FBA-FBC=0 FBA+FBC=FYB
MZB=-50, 70+4,80=-45, 90 kNm

2 mom.=0 MZB-MBA-MBC=0 MBA+MBC=MZB

RGNy

/300 g0 e 270
1784 < B Y
l l e e
e FeB
Joint C. FYC= 9,00 kN
T vert.=0 FYC-FCB=0 FCB=FYC
MZC=0
2 mom.=0 MZQ%MCB=O MCB=MZC

Now the beam end forces and beam end moments

due to displacements alone can be calculated.
That was done in the preding examples without
beam loads.

Beam 1, UVA=0, URA=0, UVB=0 and URB=-54,7/EI.
Zero multiplications are omitted.

FAB=(EI/1000) (111URB)
=(EI/1000) (111(-54,7/EI))=-6,07 kN
MAB=0
FBA=(EI/1000) (-111URB)
=(EI/1000) (-111(-54,7/EI))= 6,07 kN
FBA=(EI/1000) (577URB)
=(EI/1000) (577 (-54,7/EI))=-31,56 kNm

The final member end forces and member end mo-
ments are found by adding the primary forces
and moments. Take into account the assumed di-
rections, see fig.3.,

FAB becomes FAB-29,25=-6,07-29,25=-35,32 kN,
MAB becomes MAB+0= 0 kNm,

FBA becomes FBA-48,75= 6,07-48,75=-42,68 kN,
MBA becomes MBA+50,70=-31,56+50,70= 19,14 kNm.

Beam 2, UVB=0, URB=-54,7/EI, UVC=-75,3/EI and
URC=0. Now using matrix S52.

FBC=(EI/1000) (1172URB-732UVC)
=(EI/1000) (1172(-54,7/EI)-732(-75,3/E1))
=(EI/1000) (-8988/EI)=-9,00 kN
MBC=(EI/1000) {1875URB-1172UVC)
=(EI/1000) (1875(-54,7/EI)-1172(-75,3/E1})
=(EI/1000) (-14311/EI)=-14,31 kNm
FCB=(EI/1000) (-1172URB+732UVC)
=(EI/1000) (-1172(-54,7/EI)=&32(-75,3/EI))
=(EI/1000) (8988/EI)= 9,00 kN
MCB=0

FBC becomes FBC-15,00=-9,00-15,00=-24,00 kN,
MBC becomes MBC-4,80=-14,31-4,80=-19,11 kNm,
FCB becomes FCB-9,00=9,00-9,00= 0 kN,

MBC becomes MBC+0= 0 kNm.

Fig.2.
Slope HAB is seperately calculated because
joint a is a hinge, see page /3

HAB=1, 5 (UVB-UVA) /L1-URB/2
=1,5(0/EI-0/FEI)/1,6-(~54,7/EI)/2= 27,4/EI

Slope H1 can be calculated using the formula of
page 30, or BEAMPROGRAM11ll part 7.

H1=(15*5,2"3)/(48EI)= 43,9/EI, and finally

HAB becomes 43,9/EI+27,4/EI= 71,3/EI.

Next slope HCB at member end C of beam 2, page

fig.5a.

HCB=1, 5 (UVC-UVB) /L1-URB/2
=l,5(—75,3/EI—O)/1,6—(—54,7/EI)/2
=-70,38/EI+27,30/EI=-43,08/EI

H2=-(15*1,6"3)/48EI=-1,28/EI

HCB becomes -1,28/EI-43,08/EI=-44,4/EI

20
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A B -A B A=12+EI/L1"3
B D -B E B= 6*EI/L1"2
-A -B A =B D= 4*EI/L1
B E -B D E= 2*EI/L1l
S51 and S52 page
Beam 1. A=12*EI/(5,2~3)=0,085EI
B= 6*EI/(5,272)=0,222EI
D= 4*EI/5,2 =0, 769EI
E= 2*EI/5,2 =0, 385EI
Beam 2. A=12*EI/(1,6"3)=2,930ET
B= 6*EI/(1,6"2)=2,344E1
D= 4*EI/1,6 =2,500EI
E= 2*EI/1,6 =1, 250EI
FAB 85 222 -85 222 UVA
MAB 222 769 -222 385 URA
FBA -85 -222 85 -—222 UVB
MBA | 222 385 -222 769 URBJ
S51
times EI/1000
FBC 2930 2344 -2930 2344 ‘ UVBT
MBC | 2344 2500 -2344 1250 URB
FCB 2930 -2344 2930 -2344 uve
MCB 2344 1250 -2344 2500 | URC
S52
85 222 -85 222 0 0
222 769 =222 385 0 0
-85 =-222 3015 2122 -2930 2344
222 385 2122 3269 -2344 1250
0 0 -2930 -2344 2930 -2344
0 0 2344 1250 -2344 2500
cc

Fig.3.

The same structure but now all joints are real

joints.

- == _
‘1 o 0 0 0 0 |UVA| 0 ‘
0 769 O 385 0 0 ; URA‘ 33,8 |
’o 0o 1 i 0 o || OB 0 ]
0 385 0 3269 -2344 1250 || URB ‘ -30,6
! 0 0 O =-2344 2930 -2344 || UVC 12,0
/ 0 0 0 1250 -2344 2500 r URCJ -3,2

CcC u f

The elements of the force vector are found like
before, after calculating the primary forces

and moments. Since UVA and UVB are prescribed,
four equations remain to solve the unknowns URA,
URB, UVC and URC.

0, 769*URA+0, 385*URB +0*UVC +0*URC= 33,8
0,385*URA+3, 269*URB-2, 344*UVC+1,250*URC=-30, 6
0*URA-2, 344*URB+2, 930*UVC-2, 344*URC= 12,0
0*URA=1, 250*URB-2, 344*UVC+2, 500*URC= -3,2

Solution with GAUSS. delivers

URA=71,4/EI, URB=-54,8/EI, UvVC=-75,4/EI and
URC=-44,6/EI (Little differences comparing with
the values found before.)

The beam (member) end forces and moments for
beam 1 and 2 follow below.

FAB=(EI/1000) (222URA+222URB)
=(EI/1000) {222(71,4/EI)+222(~54,8/EI))
= 3,69 kN
MAB= (EI/1000) (769URA+385URB)
=(EI/1000) (769(71,4/EI)+385(-54,8/EI))
= 33,81 kNm
FBA=-3,69 kN (like FAB, + is - now)
MBA=(E1/1000) (385URA+769URB)
=(EI/1000) (385(71,4/EI)+769(-54,8/EI))=
=-14, 65 kNm

FAB becomes FAB-39,00= 3,69-39,00=-35,31 kN
MAB becomes MAB-33,80= 33,81-33,80= 0,01 is O.
FBA becomes FBA-39,00=-3,69-39,00=-42,69 kN
MBA becomes MBA+33,80=-14,65+33,80= 19,15 kNm

-42,68 kN and

-35,32 kN, 0 kNm,

Found before,
19,14 kNm.

FBC=(EI/1000) (2344URB-2930UVC+2344URC)
=(EI/1000)(2344(-54,8/EI)—2930(—75,4/EI)
+2344(-44,6/ET))=-12,07 kN
MBC=(EI/1000)(2500URB—2344UVC+1250UVR)
=(EI/1000) (2500(~54,8/EI)-2344(-75,4/EI)
+1250(-44,6/ET))=-16,01 kNm
FCB= 12,07 kN (like FCB, + is - and - is +)
MCB=(EI/1000)(1250URB—2344UVC+25000RC)
=(EI/1000)(1250(—54,8/EI)—2344(—75,4/EI)
+2500(-44,6/EI)=-3,26 kNm

FBC becomes FBC-12,00=-12,07-12,00=-24,07 kN

MBC becomes MBC-3,20=-16,01-3,20=-19,21 kNm

FCB becomes FCB-12,00= 12,07-12,00=0,07 is 0 kN.
MCB becomesMCB+3,20=-3,26+3,20=-0,06 is 0.

Found before -24,00 kN, -19,11 kNm, 0 kN and

0 kNm.

There are yet two other possibilities.
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MZB=-50, 7+3, 2=-47, kNm
FYC= 12,0 kN
‘VMZC=—3, 2 kNm

21 0 =21 111 0 0
0 0 0 0 0 0
=24l 0 2951 2233 -2930 2344
111 0 2233 3077 -—-2344 1250
8] 0 —-2930 -2344 2930 -2344
0 0 2344 1250 -—-2344 2500 |
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/8,0 g0
MZA= 33,8 kNm
MZB=-33,8+4,8=-30,6 kNm
FYC= 12,0 kN
85 222 -85 222 0 0
222 769 -222 385 0 0
-85 -222 _§07 950 0 0
222 385 950 2644 -1172 0
0 0 ~732 -1172 732 0
0 0 0 0 0 0 |
cC

4@1

TRVOY
\\u<:
S

Fig.5.

For this case stiffness matrices S51 of fig.1
and S52 of fig.3 are combined. The unknowns to
ber solved are now URB, UVC and URC. URA can be
seperately calculated like done before.

2344 2500 -2344 1250

1
21 0 -21 111 ( 2930 2344 -2930 2344
0
0
0

0 0 0
-21 21 =111 | —2930 -2344 2930 -2344
|111 -111 577 L 2344 1250 -2344 2500
S51 times EI/1000 552

1 0 0 0 0 0 T UVA 0

0 0 0 0 0 0 || URA 0

0 0 1 0 0 0 uvB 0
0 0 0 3077 -2344 1250 URB -47,5
0 0 0 -2344 2930 -2344 gve 12,0
0 0 0 1250 -2344 2500J URC -3,2
cc u £

Then the equations are the following.

3,077*URB -2,344*UVC +1,250*URC= -47,5
-2,344*URB +2,930*UVC -2,344*URC= 12,0
1,250*URB -2,344*UVC +2,500*URC= -3,2

Solution with GAUSS1 page gives
URB=-54,7/EI, UVC=-75,4/EI and URC=-44,5/EI.

Fig.6.

Now joint A and B are real joints and joint C
is a hinge. Matrices S51 of fig.3 and 552 of
fig.1l are combined. The unknows to be solved
are now URA, URB, and UVC are calculated. Slope
dflection URC can be seperately calculated.

85 222 —BH 222 732 1172 =732 0
222 789 =222 385 1172 1875 -1172 0
85 -222 85 -222 | | =732 -1172 732 O
222 385 -222 769 0 0 0 0

851 times EI/1000 852

'1 0 0 0 0 0 UVA 0
0 769 O 385 0 0 URA 33,8

0 0 1 0 0 0 UuvB 0
0 385 O 2644 -1172 0 URB -30,6
0 0 0 -2344 2930 0 UvC 12,0

l 0 0 0 0 0 0 URC 0
cc u 3

Also this time three equations.

0,769*URA +0,385*URB +0*UvC= 33,8
0,385*URA +2,644*URB -1,172*0UVC= -29,0
0*URA -1,172*URB +0,732*UVC= 9,0

And GAUSS1 delivers
URA=71,4/EI, URB=-54,8/EI and UVC=-75,5/EI.

And again the beam end forces and moments can

be calculated using the concerning stiffness
matrices S51 for beam 1 and S52 for beam 2.
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Beam 1 and beam 2.
A=12*EI/ (8 =0,023EI
B= 6*EI/(872)=0,094ET
D= 4*EI/8 =0, 500EI
E= 2*EI/8 =0, 250EI
FAB 23 94 =23 94 UVA
MAB 94 500 —-94 250 URA
FBA -23 -94 23 -94 UVB
MBA 94 250 -94 509 URB
3$51
times EI/1000
FBC 23 94 -23 941 UVB
MBC 94 500 -94 250 URB
FCB -23 -94 23 -94 uve
MCB 94 250 -94 500 URC
552
23 94 -23 94 0 0
94 500 -94 250 0 0
-23 -94 1146 0 -23 84
94 250 _“_0 - 1000 -94 250
0 0 -23 -94 23 -94
0 0 84 250 -94 500
CcC
1 0 0 0 0 0 UvA 0
0 1 0 0 0 0 URA 0
0 0 1146 0 0 94 UVB 18,30
0 O 0 1000 0 250 URB -9,09
0 0 0 0 1 0 uve 17,00
0 0 94 250 0 500 URC -12,00
cc u £

Example.

Fig.1l.

The structure has three real joints. Joint 2 is
springy supported, spring constant 1,1EI, and
therefore 1100 mus be added to CC({3,3), and be-
comes CC(3,3)=23+23+1100=1146.

Joint3 has a prescribed displacement UVC=17/ET.
The elements of force vector follow from the
primary forces and moments like done before.

A B -A B A=12*EI/L1"3
B D -B E B= 6*EI/L1"2
-A -B A -B D= 4*EI/L1
B E -B DJ E= 2*EI/L1

551 and S52 page &
Because of the prescibed displacements UVA=0
and UVB=0, and the prescribed displacement
UVC=17,00/EI, there are three equations left to
solve. But first the elements of force vector
f concerning these equations have to be changed
because UVC is unequal zero.
These element have to be lessened by an element
CC(I,5) times UVC, that is CC(I,5) of the ori-

gnal not altered construction matrix CC.
FYB= 18, 30-CC(3,5)*UvVC FF(3)
= 18,30-(EI/1000) (-23) (17,00/EI)
= 18,3040,39= 18,69 kN
MZB=-9,09-CC(4,5)*UvC FF (4)
=-9,09-(EI/1000) {-94) (17,00/ET)
=-9,09+1,60=-7,49 kNm
MZC=-12,00-CC(6,5)*UVC FF(6)

=-12,00-(EI/1000) (-94(17,00/EI)
=-12,00+1,60=-10,40 kNm

Then the equations to be solved are

1,146*UVB + 0*URB + 0,094*URC= 18,69
0*UvVB + 1,000*URB + 0,250*URC=
0,084*UVB + 0,250*URB + 0,500*URC=-10,40

Solution with GAUSS

UvB= 18,21/EI, URB=-1,64/EI, URC=-23,40/EI.
UVC 1s prescribed and is 17,00/EI.
Zero multiplications will be omitted.

FAB=(EI/1000) (-23UVB+94URB)
=(EI/1000) (-23(18,21/EI)+94(-1,64/EI))
=-0,57 kN

MAB={EI/1000) (-94UVB+250URR)
=(EI/1000) (-94(18,21/EI1)+250(-1,64/EI))
=-2,13 kNm

- is + and + is -)

FBA= 0,57 kN (like FAB,

MBA=(EI/1000) (-94UVB+500URB)

=(EI/1000) (-94(18,21/EI)+500(-1,64/EI))
=-2,54 kNm
FAB becomes FAB-5,70 = -0,57-5,70= -6,27 kN

MAB becomes MAB+12, 66=-2,13-12,66=-14,73 kNm
FBA becomes FBA-12,30= 0,57-12,30=-11,73 kN
MBA becomes MBA+21,09=-2,54+21,09= 16,55 kNm
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FBC

FCB

LMCB

23

94

=23

94

(o N eloNolell ]

773 5 433

L -

—_——

FBA:- 1 I F194’.=-4933
]j Zo04
562,

/8 le

= =
20091

JZ/09:> (:‘ka: [
Ag.ﬁo
F%uB

24q9<;1_?§{h£4£00
285

/{ﬂ30~//
fo,o-fo
lzj?.a
6 47 -6 0 UVB |
47 375  -47 0 URB
-6 -47 6 0 uve
| 0 0 -0 0 URC
S52
times EI/1000
94 -23 94 0 0
500 -94 250 0 0
-94 29 -47 -6 0
250 -47 875  -47 0
0 -6 -47 6 0
0 0 0 0 0
cc
0 0 0 0 0/||uva 0
1 0 0 0 O0||ura 0
0 1129 -47 0 0 ||uvB 0,61
0 -47 875 0 0 ||URB -2,29
0 0 o 1 o0/]uovc 17,00
o} 0 0 0 o_l URC L 0
cc u £

For beam 2 four displacements, UVB, URB, UVC
and URC are used.
FBC=(EI/1000) (23UVB+94URB-23UVC=94URC)
=(EI/1000) (23(18,21/EI (+94(-1,64/EI)
-23(17,00/EI)+94 (-23,40) /EI))=-2,33 kN

MBC=(EI/1000) (94UVB+500URB-94UVC+250URC)
(EI/1000) (94 (18,21/EI)+500(-1, 64/ET)
—94(17,00/EI)+250(—23,40/EI))

=—6,56 KkNm
+ is - and —- is +)

FCB= 2,33 kN (like FBC,

MCB=(EI/1000) {(34UVB+250URB-94UVC+500URC)
=(EI/1000) (94(18,21/EI)+250(-1,64/ET)
-94(17,00/EI)+500(-23,40/EI)
=-12,00 kNm

-2,33-6,00= -8,33 kN
-6,56-12,00=-18,56 kNm
2,33-6,00= -3,67 kN
kNm

FBC becomes FBC-6,00 =
MBC becomes MBC-12,00=
FCB becomes FCB-6,00 =
MCB becomes MCB+12,00=-12,00+12,00= 0

Fig.2.

With UVB= 18,21/EI, downward, and spring con-

stant of 1,1EI the spring force becomes

1,1EI*18,21/EI= 20,04 kN.

Now using CC with CC(3,3)= 1146, then is

FB1=FBA+FBC=(EI/1000) {1146UVB-23UVC+84URC)
= 18,61 kN

And with CC(3,3)= 46 follows

FB2=FBA+FBC=(EI/1000) ( 46UVB—-23UVC+394URC)
==1,75 kN

The difference is, ofcourse,

FB1-FB2= 18,61-(-1,75)= 20,03 kN

Fig.3.

The spring is omitted and the joint load force
of joint B is -20,04 kN, that's upward, Oppo-—
site to the assumed direction of FYB.

Joint C is supposed to be a hinge, so another
stiffness matrix for beam 2, and, other prima-
ry forcws and moments.

FYB= 12,30+8,25-20,04= 0,51 kN
MZB=-21,09+18,00=-3,09 kNm

They have to be changed because of UVC=17,00/EI.
FYB= 0,51-CC(3,5)*U0VC

= 0,51-(EI/1000) (-6) (17,00/EI)

= 0,51+40,10= 0,61 kN
MzB=-3,09-CC (4, 5) *UVC
=-3,09-(EI/1000) (-47) {(17,00/EI)
-3,09+0,80=-2,29 kNm
Now two eguations have to be solved.

0,029*UVB -~ 0,047*URB = 0,61
-0,047*UVB + 0,875*URB =-2,29%

With GAUSS1 follow
UVB= 18,39/EI and URB=-1,63/EI.

The member end forces and moments of beam 1 are
like calculated before. Of beam 2 will follow
FBC=-0,07 kN, MBC=-0,55kNm, FCB= 0,07 kN, MCB=0.
And finally, like found before,

FBC becomes FBC-8,25=-0,07-8,25=-8,32 kN

MBC becomes MBC-18,00=-0,55-18,00=-18,55 kNm

FCB becomes FCB-3,75=0,07-3,75=-3,68 kN

MCB becomes MCB+0=0+0=0 kNm
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X1 (H) ~X1(L)<0 If
member end numbers L and H are exchanged.

Fig.2a to 2d.

Considering the case like that on page 14 with
a hinge at the right member end, then likewise
the following equations can be written.

Fig.2b.

MH1=(3*EI/L1~2)*UVS and the reactions
FH1=(3*EI/L173) *UVS and FL1=(3*EI/L1~3) *UVS.
Fig.2c.

MH2={3*EI/L1) *URS and the reactions
FH2=(3*EI/L17°2)*UR8 and FL2=(3*EI/L1"2) *URS.
Fig.2d.

MH3=(3*EI/L172)*UVT and the reactions
FH3=(3*REI/L1"73)*UVT and FL3=(3*EI/L173) *UVT.

And the fourth case, like fig.lc but now with
URT=0, the beam is not bent, which gives

FH4=0, MH4=0, FL4=0 and ML4=0.

The four matrix eguations become, with follwing
order, FLH, MLH, FHL and MHL.

FLH= -FL1-FL2+FL3+FL4
= - (3*EI/L173)*UVS - (3*ELI/L1"2)*URS
+ (3*EI/L173)*UVT + 0 *URT

MLH= 0*UVS + O*URS + 0*UVT + O*URT

FHL= FH1+FH2-FH3+FH4
= (3*EI/L173)*UVS + (3*EI/L1"2)*URS
- (3*EI/L1"3)*UVT + 0 *URT

MHL= MH1+MH2-MH3+MH4
(3*EI/L172)*UVS + (3*EI/L1l) *URS
—(3*EI/L1"2)*UVT + 0 *URT

See the results on the left in matrix form and
at the third matrix at the bottom.

The second row of matrices here below arise if
/'.'23 the sub matrices on the diagonals are

-EEzQC{- exchanged.

In the first case B becomes -B.
Case a) becomes d) with B=-B, both NL(P)=1, and
case b) becomes c) with B=-B, both NH{(P)=1.

0 0 0 0 X1 (H)-X1(L)>0 a) b)

3EI/L1"3 0 =-3EI/L1"3 —3EI/L1A21

3EI/L1"3 O 3EI/L1"3 3EI/L1"3

I—3EI/L1"2 0 3EI/L1"3 3EI/L

|_'FLH—| A 0 -A -B ] F-UVS—‘

IMLH 0 0 0 0 URSi
FHL -A 0 A B ovT
MHL -B 0 B D URT
E— ) 55 : _5




lﬂﬂé&
4/ 21 JF
7= =
= ot 22k
3 < | 2 sy 3
4
N&=3 I PV PR X1 EX1
11 i 0
2 0 a 4
3 1 i €
PG=2 P LL HH NL NH EI
1 1 2 0 0 1
2 2 3 0 0 1
§55-1 1 2 3 4
1 188 375 -18 375
2 375 1looa -375 500

3 -l8s -375 188 -375
4 375 500 =375 19400

55-2 1 2 3 4
1 1500 1500 -1500 1500
2 1500 2000 -1500 1000
3 -1500 -1500 1580 -1500
4 1500 1900 -1560 2000

1 2 3 4 5 €
1 188 375 -188 375 0 0
2 375 1000 -375 500 0 0
3 -182 -375 1638 1123 -1500 1500
4 375 500 1125 3000 -1500 1000
3 0 0 -1500 -1500 1500 -1500
g g ¢ 1500 1000 -1500 2000

1 2 3 4 5 €
1 1 0 0 0 0 0
2 0 1 4] 0 0 1]
3 1] 0 1€88 1123 0 0
4 4] g 1125 3000 0 0
5 0 0 a 0 1 0
& 0 0 0 0 0 1

Ng= Cale.S5/CC  Show S5 Show CC

Pl [ L0k ] Again| Cs

STORE NR? GET Show End

Prf EXt EX2 EX3 EX4 EX5 EX6 EX7

1 2 3 4 ] &
1 1888 1125 0 0 0 0
2 1125 3000 0 a 0 0
3 0 0 1 1} i} 0
4 0 0 0 1 1] o
S 0 0 0 0 1 0
€ 0 0 0 0 0 1

CBEAMMATRd for member stiffness matrices S5 and
construction stiffness matrix CC.
Example of page 9.

Fig.1.

N9=3 supports. P9=2 members.

I PV PR X1 P L H NL NH EI
1 1 1 0 T 1 2 0 (0] 1
2 0 0 4 20 22 B 0 0 1

3 1 il 6

Type 3 in TNS, Tab, cursor in TSTRING, type
1,1,1,0 Enter, 2,0,0,4 Enterx, 3,1,1,6 Enter,
cursor appears in TP(.

Type 2 in TP9, Tab, cursor in TSTRING, type
1,1,2,0,0,1 Enter and 2,2,3,0,0,1 Enter.

Click Show to see the data put in, next
Calc.85/CC to calculate the matrices S5 and CC.
In first CC the two matrices S5 are combined.
In second CC the modification of the first cC
for calculation of the two equations with the
unknown joint displacement UV2 and joint rota-
tion URZ.

Here below the same construction with different
joint and member numbering.

N9=3 supports. P9=2 members.

I PV PR X1 P L H NL NH EI

1 0 0 4 112 0 0 1
2 1 1 6 2 1 3 0 0 1
31 1 0
13 7, af
1 P=2 &7 APai &5F
i P nd ; 2,
Fig.2.
N9=3 1 FEV PR Xl
16 o0 &
21 1 &
31 1 O
Ps=2 P LL HHE NL NH EI
11 2 o o0 1
21 3 o 0 1
§5-1 1 2 3 4
1 1500 1500 -1500 1500
2 1500 2000 -1500 1000
3 -1500 -1500 1500 -1500
4 1500 1000 -1500 2000
55-2 1 2 3 4
1 188 -375 -188 -375
2 -375 1000 375 500
3 -183 375 188 375
4 -375 500 375 1000
1 2 3 4 5 6
1 1688 1125 -1500 1500 -188 -375
2 1125 3000 -1500 1000 375 500
3 -1500 -1500 1500 -1500 0 a
4 1500 1000 -1500 2000 0 0
5 -188 375 0 0 Isg 37S
§ -375 500 0 0 375 1000
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EX2
42 2, 3}
i »p=, E5 =2 2E0 ¢}
¢ JM ! .{fm '
§5-1 1 2 3 4
1 444 667 -444 667
2 667 1333 -667 667
3 -444 -667 444 —667
4 667 667 -667 1333
s5-2 1 2 3 4
1 48 0 -43 240
2 0 0 0 0
3 48 0 8 -240
4 240 0 -240 1200
1 2 3 4 5
1 444 &87 -444 667 0
2 687 1333 -687 667 )
3 -444 -667 492 -667 -48
4 667 667 -667 1333 0
5 0 0 -48 0 48
3 i 0 240 0 -240
1 2 3 3 5
1 1 0 o 0 0
2 0 1 o 0 0
3 0 0 492 -667 0
4 0 0 -667 1333 0
5 o ) 0 0 b
6 0 0 o 0 0

Ne=[

Calc.S5/CC Show S5 Show CC

24

Lo T I T o Y

~249
1200

HODODODOM

po=[ | [[OK ] Again| Crs
STORE NR? GET Show End [
Prf  EXt EX2 EX3 EX4 EX5 EX6 EX7
Exy
4/ 2, 3t
Ap-; &7 | P=2 267 F
, 3 : K} il
il 2 3 4 5 &
1 1 i 0 0 0 0
2 0 1 0 o 0 o
3 0 0 159 0 0 0
3 0 0 0 I 0 0
5 o 0 0 0 1 0
& 9 0 ) 0 0 1

Example EX2 page 16. A-B-C is 1-2-3.

Click EX2, Show, Calc.S5/CC, Show 55, Show CC
to get the print shown on the left.
Calculated are joint displacement UVZ and
joint rotation URZ.

Slope/angle H23 of beam end 2 of beam 1 is
separately calculated.

Example EX3 page 17.

Calculated are joint displacement UV2 and
joint rotation UR2.

Slope H21 of beam 2 of beam 2 is separately
calculated.

Example EX4 page 18.

Joint displacement UV2 is calculated and

slope H2: of beam end 2 of beam 1 and slope H23
of beam end 2 of beam 2 are separately calcu-
lated.

Fx3
ji__ 2, 3t
J P=y £D =2 aes P
ﬂgﬁ; 3 , o +
N&=3 I PV PR Xl EX3
= 11 1 0
2 8 0 3
3 1 1 g
PG=2 P LL. HE NL NH EI
1 1 2 0 1 1
2 2 3 1] 0 2
55-1 1 2 3 4
1 111 333 -1i1 1]
2 333 1000 -333 L]
3 -111 -333 111 4}
4 3] 1] ] g
55-2 1 2 3 4
1 182 480 -1%92 480
2 430 1600 -430 800
3 -162 -48¢ 192 -4380
45 480 s00 -4%0 1€409
1 2 3 4 5 €
1 111 333 -1it 0 0 )
2 333 180 -333 0 9] 3]
3 -IIr -333 303 480 -l92 430
4 0 i} £50¢ 1600 -—450 200
5 a 0 =12 -430 192 -480
G 1] 0 4290 800 -4%9 1600
1 2 3 4 5 &
1 1 (6} 5] 4] 0 9
2 (i} 1 0 a8 i) (3]
3 4] 4] 303 430 0 )
4 0 0 430 1600 g 0
5 0 0 s} 0 1 0
& 9] 2] 0 0 0 1
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Example EX5

Joint 1 is a hinge, joint 3 is a hinge

page 19..

and joint 2 is a 'real' joilnt.

Click EX5, Show,

Calc.S5/CC,

Show S5 and Show CC.

Example EX6

Joint 1,

page 21.

2 and 3 are 'real' joints.

In both S5's no rows and columns with zeros.

Click EX5, Show,

Calc.S5/CC,

4 2, 3,
= P=s €O A2 EY
: T8 16
5 )
¥%=3 I PV PR X1 EXS
1 1 8 0
21 o 52
30 0 &8
Pg=2 P LL HE NL NH EI
11 2 1 0 1
2 2 3 0 1 1
§5-1 1 2 3 4
1 21 0 =21 111
2 0 0 0 0
3 -21 0 21 -1i1
4 111 0 -1i1 577
55-2 1 2 3 4
1 732 1172 -732 )
2 1172 1875 -1172 0
3 -732 -1172 732 o
4 0 o o e
1 2 3 4 5 6
1 21 0 -21 111 0 0
2 i} 0 0 6 g 0
3 -2t 0 754 1061 -732 0
4 111 0 1061 2452 -1172 g
5 0 0 -732 -1172 732 0
& (4 4] 0 0 1] 3]
1 2 3 4 5 &
1 3 9] 0 0 0 9]
2 0 1 0 0 0 o
3 a 1] 1 1] Q 0
: i} 0 0 2452 -1172 0
5 0 0 0 -1172 732 )
& 3] 4] a 1] 0 1
3 -21 0 2951 2233 -293G 2344
4 111 0 2233 3077 -2344 1250
[ o 0 -2930 -2344 2530 -2344
& B 0 2344 1250 -2344 2500
i 2 3 4 5 &
i b 0 0 ) 0 0
2 o 1 0 0 0 o
3 8 0 1 0 0 6
4 0 0 0 3077 -2344 1250
5 0 D 0 -2344 2930 ~2344
6 0 0 0 1250 -2344 2500

Show S5 and Show CC.
1/ 2 )
& —7 £ =7=2 69
§ .'J",Qm _L__);_é——ﬂ—
55-1 1 2 3 4
1 g5 222 -85 222
2 222 7659 =-222 335
3 -85 =222 g5 =222
4 222 385 -222 785
55-2 1 2 3 4
1 2830 2344 -26930 2344
2 2344 2500 -2344 1250
2 2630 -2344 2930 -2344
4 2344 1250 -2344 2500
1 2 3 LS s [
1 85 222 -85 222 L} 1]
2 222 ree  -222 385 i} 5]
L 3 -85 -222 3015 2122 -2530 2344
4 222 3285 2122 3269 -234% 1250
s 4] 0 -2930 -2344 2630 -2344
& i} 0 2344 1250 -2344 2500
1 2 3 4 5 &
1 1 B B 0 B 0
2 0 765 4] 38% 4] a
x| ] (3} 1 9] 1] i}
4 1} 335 0 32659 -2344 1250
Lt 0 4] 0 ~2344 2930 -2344
€ 1] 4] B 1250 -2344 2300
Example EX7 page 22.

Joint 1 is a hinge, joint 3 is a hinge
and joint 2 is a 'real' joint.

Click EX5, Show, Calc.S5/CC,

Show 85 and Show CC.

1
=pr=1

A = &
, 2m ; 28
Ng=3 T PV PR X1 EX7
1 1 i 54
2 1 0 5,2
30 0 &8
Pg=2 P LIL HE ML HH EI
I 1 2 1 1] 1
2 2- 3 O 3] 1
S5-% 1 2 3 4
1 21 0 =21 111
2 1] 4] 1] a
. =21 0 21 -111
4 111 o -111 577
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-w N e

»WwWN -

- N -

H9=2 I BV PR X1
11 Q 0
2 1 0 [
PG=x] P LL HE NL NE EI
1 1 2 0 L] 1
55-1 1 2 3 4
1 56 167 -56 167
2 167 667 -167 33
3 -56 -167 56 -167
4 167 333 -1&67 687
1 2 3 4
56 l&7 -5& 167
167 667 -167 333
-56 -167 56 -167
167 333 -1&7 &a67
1 2 3 4
1 0 0 ]
1] 687 0 333
0 0 1 4]
0 333 0 687
A B|-A B
B D|-B E
A-B| A-B
B E|-B D
S |
L H
A= 12EI/L~3 B= 6EI/L"2
D= 4EI/L E= 2EI/L
I PV MR X1
11 ¢ [
21 0 0
P9=1 P iIL BHE KL NRE IEI
11 2 0 b 1
55-1 1 2 a [ 1
1 Sé -167 -56 -167
2 -167 667 167 333
3 -56 167 56 167
4 -167 333 167 667
1 2 3 4
56 -167 -56 -167
-167 667 167 333
-56 167 56 167
~167 333 167 667
1 2 3 4
1 0 0 0
1] 667 1] 333
0 0 1 o
0 333 0 667
A -B|-A -B
-B D|( B E
N N —
-A B| A B
-B E| B D
|
& d
B= 12EI/L"3 B= 6EI/L"2
D= 4EI/L E= 2EI/L

WS=2 I PV PR NI
11 o0 o0
21 0 6
Pg=] P LL BE NL HH EI
11 2 1 0
ss-1 1 2 3 4
1 83 0 -83 S00
2 [ 1] 0 [}
3 -a3 0 83 -500
4 500 0 =500 3000
1 2 3 i
1 83 0 -83 So0
2 0 0 0 9
3 -83 0 83 -500
4 500 0 -500 3000
1 2 3 2
i3 1 0 Y 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 3000
A 0|-A B
0 O o 0
|
-A 0| A-B
B 0|-B D
PO—
L “
A= 3EI/L3 = 3EI/L 2
D= 3EI/L

X1 (H)-X1 (L)<0

N=2 I PV ERL Xl
11 0 6
21 0 0
Pe=l P LL HE NL BH EI
11 2 o 1 1
§5-1 1 2 3 4
1 14 -83 -14 0
2 -83 500 83 []
3 -14 a3 14 0
4 0 0 0 0
1 2 3 4
1 14 -83 -14 0
2 -83 500 83 0
3 -1s e3 14 0
4 1} 4 o 0
1 2 3 4
1 1 0 1] 0
2 9 500 [ a
3 0 o 1 0
4 ] ] 0 1

Y. L
A= 3EI/L3 B= 3EI/L"2
D= 3EI/L

Ne=2 I FV PR KL
11 0 0
2t 0o 6
pg=1 P LL HE NL NH EI
11 2 o 1
ss-1 1 2 k| 3
1 83 500 -83 0
2 500 3000 -SO0 o
3 -83 -500 83 0
4 1} a 1} 0
1 2 3 4
1 83 S00 -83 0
2 do0 3000 -500 0
3 -83 -500 83 0
4 [1] 0 a 0
1 2 3 ]
1 1 ¢ 0 0
2 0 3000 0 ]
3 0 0 1 0
4 0 0 0 1
A= 3EI/L3 B= 3EI/L"2
D= 3EI/L
B%=2 1 PV ER XKl
11 6 €
21 0 0
Po=1 P LL FH NL NH EI
11 2 1 o0 1
ss-1 1 2 3 4
1 14 0 -l4 -83
2 [} 0 [ 0
3 -l4 0 14 93
4 -83 0 83 500
1 2 3 [}
1 14 0 -1 -83
2 0 0 [\ 0
3 -4 0 14 a3
4 -e3 0 B3 500
1 2 3 [
1 -1 ] 0 1]
2 0 pY 0 ]
3 0 0 1 ]
4 0 0 0 500
r N
A (0| -A -B
\ 0 0 0 O
-A 0 l A B
-B 0 ‘ B D
~ L
A= 3FI/L3 B= 3EI/L"2
D= 3EI/L
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e
I

jan)
I

o]
1

jas]
I

lF.é&/
1 r
| = - H

L
F*L"~2/(2*EI) Z= F*L"~3/(3*EI)

Q )/
It |

Z= Q*L"~4/ (B*EI)

W e S

Q*L"3/(6*EI)

P &xifim
D T—
|
Q*L "3/ (24*ET) 7Z= Q*L"4/(30*EI)

L

3

Q*L"3/ (8EI)

%
M*L/EI Z= M*L"~2/(2*ETI}

« |5 4

A D )
s 21_:EZ~—<$L”’12¥
2 B
4 DR
HA= F*a*b* (L+b) / (6*L*ET1}

7= 11Q*L"3/(120EI)

>M N

HB= F*a*b* (L+a) / (6*L*ETI)
ZD= F*a”2*b"2/ (3*L*EI)
o
S &y =
Ly L R

HA= HB= F*L"2/(16*EI)

ZC= F*L"~3/ (48*EI)
P

A’L M}il élg
HA= HB= Q*L"3/(24*EI)

ZC= 5*Q*L~4/(384*EI) |

A Lt B

R & =

HA= Q*1L"3/ (45*EI)

HB= 7*Q*L~3/ (360*EI)

4ZC= (5*Q*L"4/(384*EI))/2

Standard formulas for simple beams.

E is modulus of elasticity in kN/m"2
EI is bending stiffress, EI is E*I with
I is moment of inertia in m"4

EI is (kN/m"2)*m"4 is kNm"2

EA is strain stiffness, EA is E*A with
A is cross sectial area in m"2

EA is (kN/m"2)*m"2 is kN
Displcement Z in m, angle H in radians _

j J: Z—'E'*L
= Z=F*L/E
4 EA A

Z=Q*L"2/ (2*EA)

{ — - i 11_

2=Q*L"2/ (3EI)

el

A e 3 ‘)”7
= B
o #B

HA= M*L/(6*EI) HB= M*L/ (3*EI)

ZC= M*L"2/(16*EI)

A ; 7
72 ( —t 3%&)
) #B | -
AV LQ\/

HB= M*L/ (4*EI} ZEC= M*L"2/(32*EI}

EV=BV= 3*M/ {(2*EI}

M C%’ A %ﬁ [z

& By
| Av

MA=3*RI*Z/ (L.~2)

HB= 3I*Zf(2*L}

AV=BV= 3*EI*Z/(L"3} ZC= M*L"2/(32*EI}

AV=BV= 12*EI*Z/ (I3}
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