

Part 7

Program code for basic subroutines,
all explained in detail, without sign conventions!!

'beam axis system' 'member axis system'

For axially loaded members. Part 4 page 15

Private Sub MEMBER()

For perpendicular loaded members.

The 'left' is the member end where the 'beam axis system' is placed.

Private Sub BEAM1() and
Private Sub QLOAD()

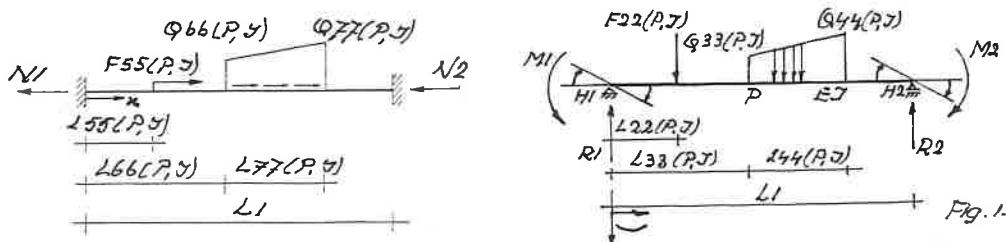
1 - 2
3

Private Sub BEAM2()

4 - 6

Private Sub BEAM3() and
Private Sub TWOEQUATIONS()

7 - 8



Private Sub T5M5XX()

9 - 11

Calculation of shear force T5 at X m
from the 'left'.

Private Sub T5M5X()

12-13

Calculation of shear force T5 and bending
moment M5 with distances to the 'left',
after using BEAM1, BEAM2 or BEAM3.

Private Sub MMAXM5()

14

Calculation of the maximum moment and bending
moment zero points. with distances
from the 'left'. With T5M5XX.

Private Sub H8Z8XX()

15-17

Calculation of slope deflection H8 displacement
Z8 at X m from the 'left'.

Private Sub ZMAXZ8()

18

Calculation of the largest displacement Z8 with
distance X m from the 'left'. With H8Z8XX.

Private Sub T5M5G()

Private Sub T5M5()

19

Calculation of shear forces T5 and T7 at each
G m from the 'left'.

Private Sub H8Z8G()

20

Calculation of slope deflection H8 and displacement Z8 each G m from the 'left'. With H8Z8XX.

Private Sub CONSTRMATTRCCBEAM()

21

Private Sub FILLINGS5CBEAM() to fill CC.

22

Private Sub MEMBERMATS5CBEAM()

22

Private Sub CBEAMMAINCALC()

23-29

Private Sub CBDRAWT5()

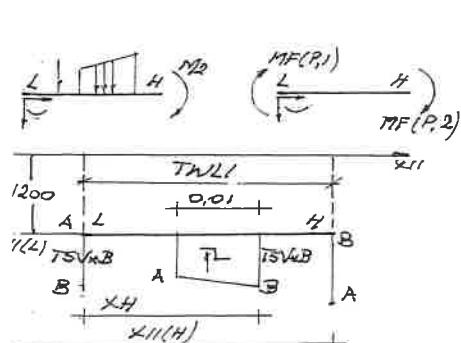
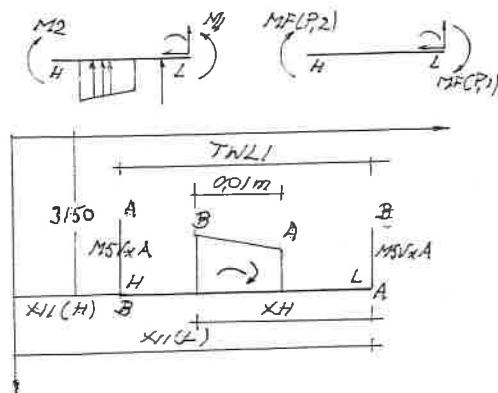
30

Drawing the shear force diagram.

Private Sub T5MAX()U

31

Determining the largest transverse force.



Private Sub CBDRAWM5()

32

Drawing the bending moment diagram.

Private Sub M5MAX()

32

Determining the largest bending moment.

Private Sub DRAWELCURVE()

33

Drawing the bending elastic curve.

Summary of the subroutines.

37-42

Private Sub BEAM1()

The statically determinate supported beam on two supports, a hinge support and a roller (hinge) support. The beam can be loaded with concentrated loads and uniformly distributed loads.

Fig.1.

The reactions R_1 and R_2 and the slopes H_1 and H_2 to be calculated are set zero first.

$$R_1=0 : R_2=0 : H_1=0 : H_2=0$$

The concentrated loads.

Fig.2.

For $I=1$ T NFB(P)

$$F_2=F_{22}(P, I) : L_2=L_{22}(P, I)$$

$$\Sigma \text{ mom. A} = 0$$

$$F_2 \cdot L_2 - R_4 \cdot L_1 = 0 \Rightarrow R_4 = F_2 \cdot L_2 / L_1$$

$$\Sigma \text{ vert.} = 0$$

$$R_3 + R_4 - F_2 = 0 \Rightarrow R_3 = F_2 - R_4$$

These values are added to the preceding values of R_1 and R_2 with $R_1=R_1+R_3 : R_2=R_2+R_4$.

Fig.3a.

At the left beam end the unloaded beam is thought to be clamped under the assumed slope H_3 . The deflection, or displacement, of beam end B is $Z_3=H_3 \cdot L_1$.

Fig.3b.

Next the unloaded beam is thought to be horizontally clamped at A and loaded with force F_2 at distance L_2 from A.

With bending stiffness EI and by means of the standard formulas (page 36) one finds slope H_5 at beam end B which is equal to the slope at the place where F_2 is applied, $H_5=F_2 \cdot L_2^2 / (2 \cdot EI)$

and the displacement Z_1 at B which is equal to the displacement at C plus the displacement at C due to the slope H_5 at C, $Z_1=F_2 \cdot L_2^3 / (3 \cdot EI) + H_5 \cdot (L_1 - L_2)$.

Fig.3c.

The on the left horizontally clamped beam now is loaded with reaction force R_4 which causes displacement Z_2 at B.

$$Z_2=R_4 \cdot L_1^3 / (3 \cdot EI)$$

The total displacement of B is zero.

$$Z_3 + Z_1 - Z_2 = 0 \quad \text{or} \quad H_3 \cdot L_1 = Z_2 - Z_1 \quad \text{from which}$$

$$H_3 = (Z_2 - Z_1) / L_1.$$

Slope H_4 at beam end B, assumption to the right then becomes $H_4=H_3+H_5-H_8$.

Slope H_4 at B, assumption turning to the right the becomes $H_4=H_3+H_5-H_8$.

The calculated slopes H_3 and H_4 due to F_2 are added to the preceding value of H_1 and H_2 with $H_1=H_1+H_3 : H_2=H_2+H_4$.

Then the next concentrated load with

Next I

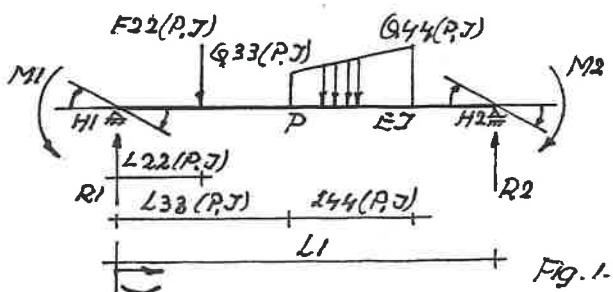


Fig.1.

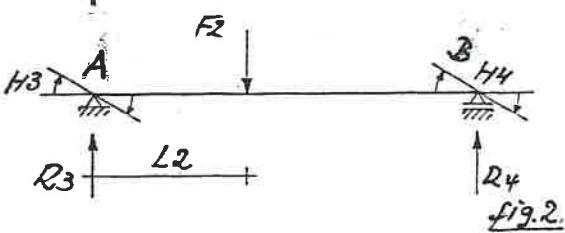


Fig.2.

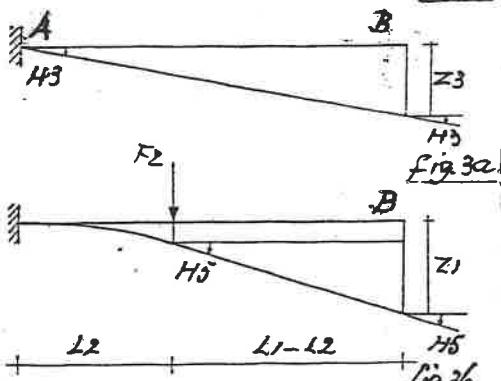


Fig.3a.

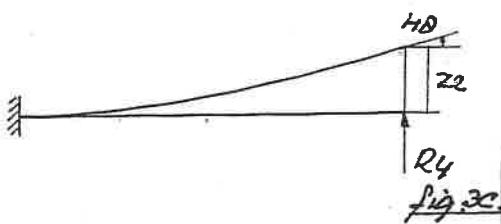


Fig.3b.

Private Sub BEAM1()

'The statically determinate beam on two supports, the simple beam.
'Calculation of the support reactions and the slopes at the beam ends.

$$R_1=0 : R_2=0 : H_1=0 : H_2=0$$

'The concentrated loads.

For $I=1$ To NFB(P)

$$F_2=F_{22}(P, I) : L_2=L_{22}(P, I)$$

$$R_4=F_2 \cdot L_2 / L_1 : R_3=F_2-R_4$$

$$R_1=R_1+R_3 : R_2=R_2+R_4$$

$$H_5=F_2 \cdot L_2^2 / (2 \cdot EI)$$

$$Z_1=F_2 \cdot L_2^3 / (3 \cdot EI) + H_5 \cdot (L_1 - L_2)$$

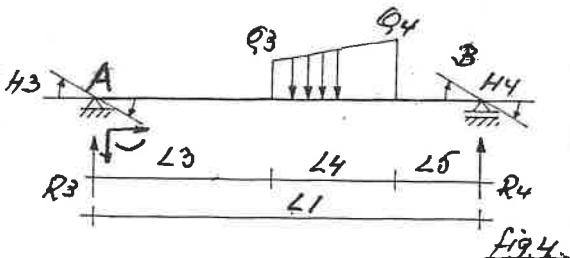
$$Z_2=R_4 \cdot L_1^3 / (3 \cdot EI)$$

$$H_3=(Z_2-Z_1) / L_1 : H_8=R_4 \cdot L_1^2 / (2 \cdot EI)$$

$$H_4=H_3+H_5-H_8$$

$$H_1=H_1+H_3 : H_2=H_2+H_4$$

Next I



The distributed loads.

Fig.4.

For $I=1$ To $NQB(P)$

$Q3=Q33(P,I)$: $L3=L33(P,I)$

$Q4=Q44(P,I)$: $L4=L44(P,I)$

Before subroutine QLOAD is called first length L5 has to be determined, see next page.

$$L5=L1-L3-L4$$

Then follows QLOAD, with which for instance are calculated resultant T, length A1, slope H7 and displacement Z1 of fig.5b.

After that the reactions are calculated.

$$\Sigma \text{ mom. A} = 0$$

$$T \cdot (L3+A1) - R4 \cdot L1 = 0 \Rightarrow R4 = T \cdot (L3+A1) / L1$$

$$\Sigma \text{ vert.} = 0$$

$$R3+R4-T=0 \Rightarrow R3=T-R4$$

$$\text{And then } R1=R1+R3 : R2=R2+R4.$$

And so on likewise with the concentrated loads.

Fig.5a.

The displacement of B is $Z3=H3 \cdot L1$.

Fig.5b.

Subroutine QLOAD, next page, gives H7 and Z1.

Fig.5c.

$$Z2=R4 \cdot L1^3 / (3 \cdot EI)$$

The total displacement of B is zero.

$$Z3+Z1-Z2=0 \text{ or } H3 \cdot L1=Z2-Z1 \text{ from which}$$

$$H3=(Z2-Z1) / L1.$$

Due to reaction R4 arises

$$H8=R4 \cdot L1^2 / (2 \cdot EI) \text{ and the slope at B becomes} \\ H4=H3+H7-H8.$$

Now H3 and H4 are known and follow

$$H1=H1+H3 : H2=H2+H4.$$

And then the next distributed load with
Next I.

The beam end moments M1 and M2.

Fig.6.

$$\Sigma \text{ mom. A} = 0$$

$$M2-M1-R4 \cdot L1=0 \Rightarrow R4=(M2-M1) / L1$$

$$\Sigma \text{ vert.} = 0$$

$$R3+R4=0 \Rightarrow R3=-R4$$

In the figures the deformations of the beams due to M1 and M2 are drawn. The magnitude of the slopes one can find with the formulas of page 36.

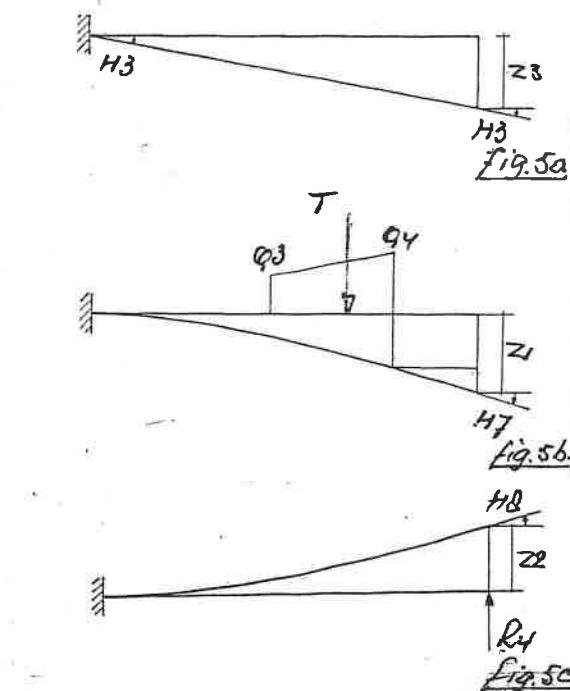
The assumption for H3 and H4 are like that for H1, so to the right.

$$H3=-M1 \cdot L1 / (3 \cdot EI) - M2 \cdot L1 / (6 \cdot EI)$$

$$H4=M1 \cdot L1 / (6 \cdot EI) + M2 \cdot L1 / (3 \cdot EI)$$

Then $H1=H1+H3 : H2=H2+H4$ and the end of the subroutine with

End Sub



The distributed loads.

For $I=1$ to $NQT(P)$

$Q3=Q33(P,I)$: $Q4=Q44(P,I)$

$L3=L33(P,I)$: $L4=L44(P,I)$

$L5=L1-L3-L4$

QLOAD

$$R4=T \cdot (L3+A1) / L1 : R3=T-R4$$

$$R1=R1+R3 : R2=R2+R4$$

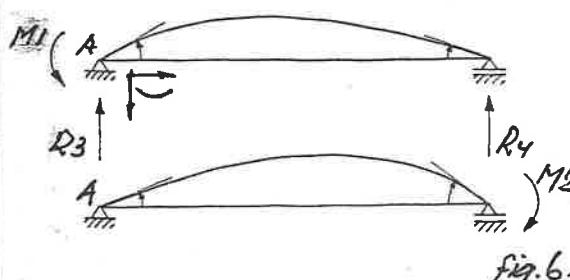
$$Z2=R4 \cdot L1^3 / (3 \cdot EI)$$

$$H3=(Z2-Z1) / L1 : H8=R4 \cdot L1^2 / (2 \cdot EI)$$

$$H4=H3+H7-H8$$

$$H1=H1+H3 : H2=H2+H4$$

Next I



The beam end moments M1 and M2.

$$R4=(M2-M1) / L1 : R3=-R4$$

$$R1=R1+R3 : R2=R2+R4$$

$$H3=-M1 \cdot L1 / (3 \cdot EI) - M2 \cdot L1 / (6 \cdot EI)$$

$$H4=M1 \cdot L1 / (6 \cdot EI) + M2 \cdot L1 / (3 \cdot EI)$$

$$H1=H1+H3 : H2=H2+H4$$

End Sub

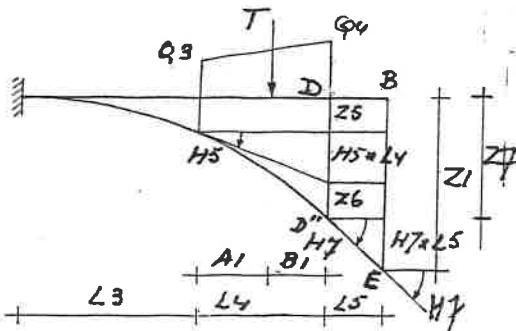


Fig.1.

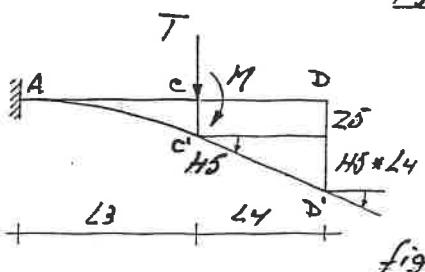


Fig.2a.

Private Sub QLOAD()

'The statically determinate on the 'left clamped beam with trapeze 'like distributed load.

$$\begin{aligned}
 T &= 0.5 * (Q3 + Q4) * L4 \\
 B1 &= (2 * Q3 + Q4) * L4 / (3 * (Q3 + Q4)) \\
 A1 &= L4 - B1 : M = T * A1 \\
 Z5 &= T * L3^3 / (3 * EI) + M * L3^2 / (2 * EI) \\
 H5 &= T * L3^2 / (2 * EI) + M * L3 / EI \\
 Z6 &= Q4 * L4^4 / (8 * EI) \\
 Z6 &= Z6 - (Q4 - Q3) * L4^4 / (30 * EI) \\
 H6 &= Q4 * L4^3 / (6 * EI) \\
 H6 &= H6 - (Q4 - Q3) * L4^3 / (24 * EI)
 \end{aligned}$$

$$H7 = H5 + H6 : Z7 = Z5 + H5 * L4 + Z6$$

$$Z1 = Z7 + H7 * L5$$

End Sub

Private Sub QLOAD()

Calculation of displacement and slope at member end B of the on the left clamped horizontal beam due to a trapeziform distributed load.

Fig.1.

The beam is after being clamped not loaded, after that loaded with the distributed load. T is the resultant, the area of the trapeze. $T = 0.5 * (Q3 + Q4) * L4$

The centre of gravity of the trapeze lies at distance $B1$ from the right side of it and is $B1 = (2 * Q3 + Q4) * L4 / (3 * (Q3 + Q4))$ Further is $A1 = L4 - B1$.

Fig.2a.

First now the effect of the bending over part AC. Resultant T is resolved in a transverse force T at C and a bending moment $M = T * A1$ at C. Through that arise displacement $Z5$ and slope $H5$ at C'.

$$Z5 = T * L3^3 / (3 * EI) + M * L3^2 / (2 * EI)$$

$$H5 = T * L3^2 / (2 * EI) + M * L3 / EI$$

$C'D'$ is straight. D displaces over $Z5$ plus the effect of angle $H5$ at C', $H5 * L4$.

Fig.2a and 2b.

Next the bending over part $C'D'$. The displacement of C and slope $H5$ at C' are fixed now. Unloaded part $C'D'$ is clamped under slope $H5$ at C' after which the distributed load is applied. Then the deformation arises as drawn in fig.1. In fig. member part $C'D'$ is drawn horizontally clamped which is allowed because displacement and slope are very small with respect to the length of the member.

By summing the effect of the triangular and trapeziform distributed loads arise $Z6$ and $H6$.

$$Z6 = Q4 * L4^4 / (8 * EI) - (Q4 - Q3) * L4^4 / (30 * EI)$$

$$H6 = Q4 * L4^3 / (6 * EI) - (Q4 - Q3) * L4^3 / (24 * EI)$$

From C' upto C'' (see fig.1) angle $H5$ increases with angle $H6$. Angle $H7$ at D'' then becomes $H7 = H5 + H6$.

The displacement of D becomes $Z7 = Z5 + H5 * L4 + Z6$.

The last part of the beam is not bent, is straight, so that at beam end E also angle $H7$ arises.

Due to slope $H7$ at D'' follows yet a displacement $H7 * L5$ at B.

The total displacement of member end B becomes

$$Z1 = Z7 + H7 * L5$$

and finally the end of the subroutine QLOAD,

End Sub

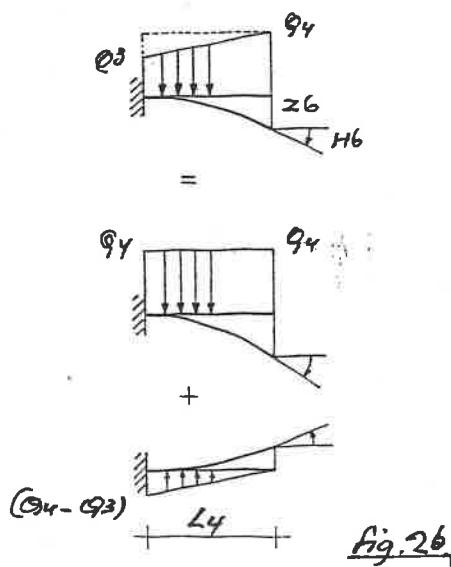
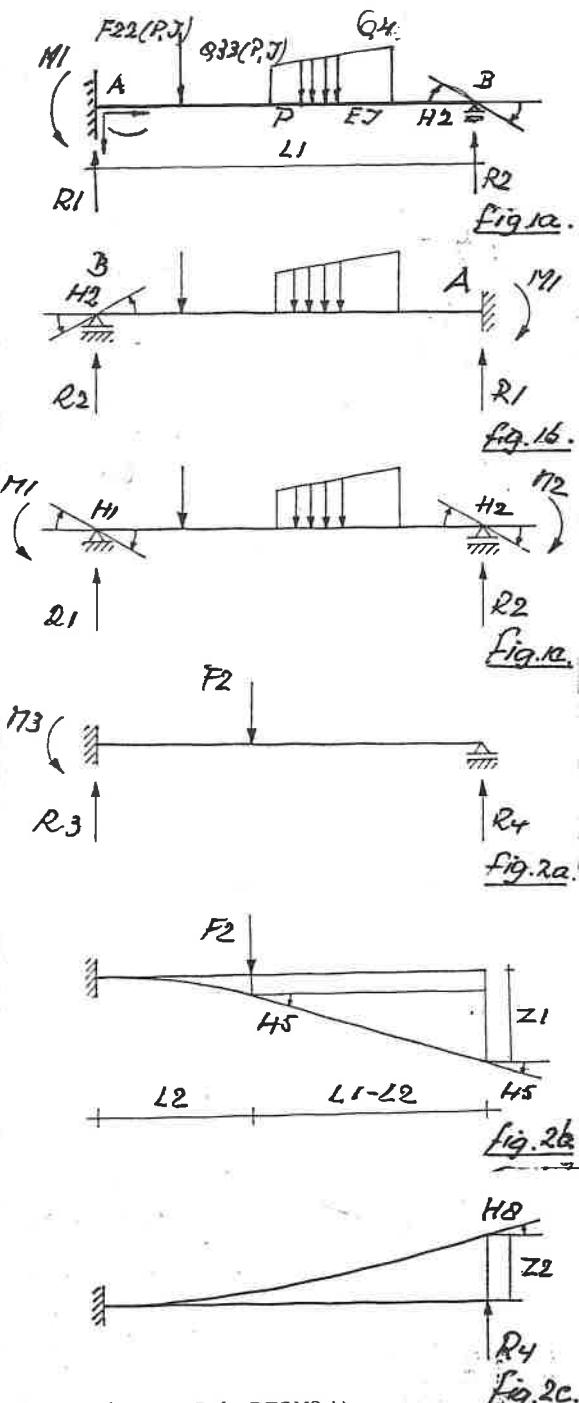


Fig.2b



Private Sub BEAM2()

The onefold statically indeterminate beam on two supports.

Fig.1a.

It is assumed that the beam is clamped on the left and supported by a roller on the right. The reactions R_1 and R_2 , the clamp moment M_1 and slope H_2 at the support on the right. At the member end on the right does not act a member end load moment.

Fig.1b.

If the beam is clamped on the right and supported by a roller on the left, then the calculation goes as for fig.1a for which the data put in for fig.1a are altered. After the calculation follows restoration of 'left and right'.

For example, moment M_1 becomes M_2 . See fig.5 on the next page.

Fig.1c.

Here are shown the assumed directions of the reactions, member end moments and slopes.

First all unknowns are set zero.

$R_1=0 : R_2=0 : M_1=0 : M_2=0 : H_1=0 : H_2=0$

The concentrated loads.

Fig.2a, 2b, 2c.

For $I=1$ To NFB(P)

$$F_2=F_{22}(P,I) : L_2=L_{22}(P,I)$$

If $LE(P)=1$ then the hinge is on the left and is taken distance for force F_2 from the right.

If $LE(P)=1$ Then $L_2=L_1-L_2$

Due to F_2 arise H_5 and Z_1 .

$$H_5=F_2 \cdot L_2^2 / (2 \cdot EI)$$

$$Z_1=F_2 \cdot L_2^3 / (3 \cdot EI) + H_5 \cdot (L_1-L_2)$$

Due to the (still unknown) reaction R_4 arises $Z_2=R_4 \cdot L_1^3 / (3 \cdot EI)$.

The displacement of B is zero.

$$Z_1-Z_2=0 \quad \text{or} \quad Z_1-R_4 \cdot L_1^3 / (3 \cdot EI) \quad \text{from which} \\ R_4=Z_1 \cdot (3 \cdot EI) / L_1^3.$$

Fig.2a.

$$\Sigma \text{ mom. A} = 0$$

$$F_2 \cdot L_2 - R_4 \cdot L_1 - M_3 = 0 \Rightarrow M_3 = F_2 \cdot L_2 - R_4 \cdot L_1$$

$$\Sigma \text{ vert.} = 0$$

$$R_3 + R_4 - F_2 = 0 \Rightarrow R_3 = F_2 - R_4$$

R_3 , R_4 and M_3 are added to preceding values of R_1 , R_2 and M_1 with

$$R_1=R_1+R_3 : R_2=R_2+R_4 : M_1=M_1+M_3.$$

Slope H_8 due to R_4 is

$$H_8=R_4 \cdot L_1^2 / (2 \cdot EI).$$

Due to F_2 and R_4 arises slope H_4 at B.

$$H_4=H_5-H_8$$

Finally $H_2=H_2+H_4$ and then the next concentrated load $F_{22}(P,I)$ with

Next I.

Private Sub BEAM2()

'The onefold statically indeterminate beam on two supports.
'Calculation of the reactions and
'the slope at the not clamped beam-
'end.

$$R_1=0 : R_2=0$$

$$H_1=0 : H_2=0$$

For $I=1$ To NFB(P)

$$F_2=F_{22}(P,I) : L_2=L_{22}(P,I)$$

If $LE(P)=1$ Then $L_2=L_1-L_2$

$$H_5=F_2 \cdot L_2^2 / (2 \cdot EI)$$

$$Z_1=F_2 \cdot L_2^3 / (3 \cdot EI) + H_5 \cdot (L_1-L_2)$$

$$R_4=Z_1 \cdot (3 \cdot EI) / (L_1^3)$$

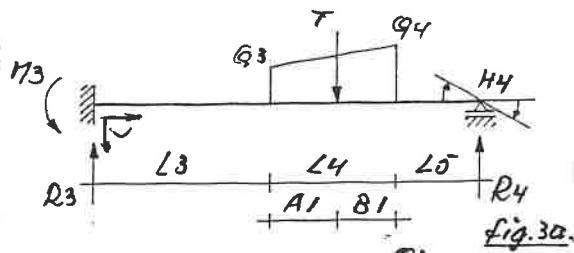
$$M_3=F_2 \cdot L_2 - R_4 \cdot L_1 : R_3=F_2-R_4$$

$$R_1=R_1+R_3 : R_2=R_2+R_4 : M_1=M_1+M_3$$

$$H_8=R_4 \cdot L_1^2 / (2 \cdot EI)$$

$$H_4=H_5-H_8 : H_2=H_2+H_4$$

Next I



The distributed loads.

Fig.3a.

For $I=1$ To $NQB(P)$

$Q3=Q33(P,I)$: $L3=L33(P,I)$

$Q4=Q44(P,I)$: $L4=L44(P,I)$

Before calling subroutine QLOAD first becomes $L5=L1-L3-L4$.

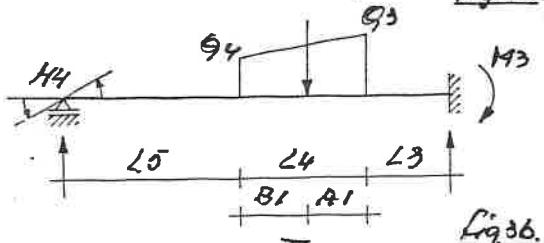


Fig.3b.

Is $LE(P)=1$ then the hinge is on the left and the clamp on the right. Then the data are changed in such way as if it is the construction of fig.3a. Just realize that data of fig.3b are put in exactly in the same way as for fig.3a.

If $LE(P)=1$ Then

$Q3=Q44(P,I)$: $Q4=Q33(P,I)$: $L3=L1-L3-L4$

$L5=L1-L3-L4$

End If

Fig.4a.

Subroutine QLOAD delivers T , $A1$, $Z1$ and $H7$.

Fig.4b.

Due to $R4$ arises $Z2=R4 \cdot L1^3 / (3 \cdot EI)$

The displacement of B is zero.

$Z1-Z2=0$ or $Z1-R4 \cdot L1^3 / (3 \cdot EI)$ from which $R4=Z1 \cdot (3 \cdot EI) / L1^3$

Fig.3a.

Σ mom. A = 0

$T \cdot (L3+A1) - R4 \cdot L1 - M3 = 0 \Rightarrow M3 = T \cdot (L3+A1) - R4 \cdot L1$

Σ vert. = 0

$R3+R4-T=0 \Rightarrow R3=T-R4$ en dan

$R1=R1+R3$: $R2=R2+R4$: $M1=M1+M3$.

Slope $H8$ due to $R4$ is

$H8=R4 \cdot L1^2 / (2 \cdot EI)$.

Slope $H4$, assumption into the right, fig.3q for both construction cases then becomes

$H4=H7-H8$, and after that addition gives $H2=H2+H4$ and then the next distributed load with

Next I.

If the clamp is on the left then the calculated $R1$, $R2$, $M1$ and $M2$ are correct. Further are $M2=0$ and $H1=0$ as was assumed in the beginning.

Fig.5.

If the hinge is on the left, the clamp on the right, then $R2$ is calculated on the left, $R1$ and $M1$ on the right. Also slope $H2$ on the left which is now to the left. For all members the names of the variables on the left (place of beam axis system \rightarrow) are $R1$, $M1$ and $H1$, and on the right $R2$, $M2$ and $H2$.

To make the names suit the following lines are added.

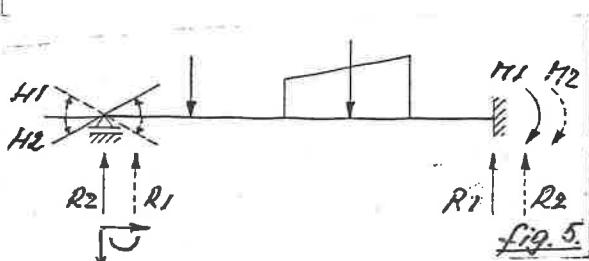
If $LE(P)=1$ Then

$R=R1$: $R1=R2$: $R2=R$: $M2=M1$: $M1=0$

$H1=-H2$: $H2=0$

End If

$R1$ is kept for a while with R for make changes in a correct way. Because $H2$ is to the left becomes $H1=-H2$.



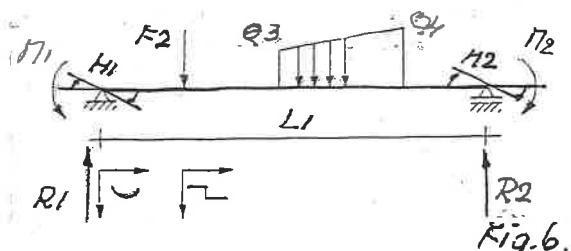


Fig.6.

Fig.6.

Again the beam with the assumed directions of the member end moments M_1 and M_2 , the reactions R_1 and R_2 , and the slope deflections H_1 and H_2 .

Fig.7a.

$LE(P)=0$.

The right beam end is loaded with moment M_4 , assumed to be directed to the right. Then the deformation caused by this moment is drawn with which the real directions of the reactions can be drawn, the vertical ones with magnitude $1.5M_4/L_1$, on the left downward and on the right upward, and the reaction moment $M_4/2$ directed to the right, see the formulas on page 36.

The reactions R_1 , R_2 and M_3 .

Reaction R_3 is assumed directed upward, opposite to the real direction of the reaction on the left, then becomes $R_3=-1.5M_4/L_1$.

Reaction R_4 is assumed directed upward, the same like the real direction of the reaction on the right, so $R_4=1.5M_4/L_1$.

Reaction moment M_3 is assumed to the left, the real direction of the reaction moment is to the right, so $M_3=-M_4/2$.

The slope deflection at the right member end is $H_4=M_4*L_1/(4*EI)$ to the right like the figure shows.

The results added to previous values gives $R_1=R_1+R_3$: $R_2=R_2+R_4$: $M_1=M_1+M_3$.

Moment M_2 at the right end becomes $M_2=M_4$, and the slope deflection $H_2=H_2+H_4$.

Fig.7b.

$LE(P)=1$.

Now with the hinge support on the left. The reactions are found in the same way. Taking into account the real directions of the reactions due to M_4 , and the assumed directions of R_3 , R_4 and M_3 follow

$R_3=1.5M_4/L_1$: $R_3=-1.5M_4/L_1$: $M_3=-M_4/2$ and $H_4=M_4*L_1/(4*EI)$.

Then again $R_1=R_1+R_3$: $R_2=R_2+R_4$ and then instead of M_1 now $M_2=M_2+M_3$, and instead of M_2 now $M_1=M_4$. And instead of H_2 now $H_1=H_1-H_4$.

There is only one load moment, one can write as well, shorter,

$R_1=R_1+1.5M_4/L_1$: $R_2=R_2-1.5M_4/L_1$: $M_2=M_2-M_4/2$

$M_1=M_4$

$H_1=H_1-M_4*L_1/(4*EI)$.

Fig.8.

In fig.7a member end load moment M_4 has an assumed direction to the right like that of M_2 . But that not necessary, one may assume the direction of moment M_4 to the left, then the deformations caused by M_4 is like drawn on the left with which follow the real directions of the reactions, on the left a vertical reaction upward and a moment to the left, and on the right a vertical reaction downward. Then follows, on the short way,

$R_1=R_1+1.5M_4/L_1$: $R_2=R_2-1.5M_4/L_1$: $M_1=M_1+M_4/2$

$M_2=-M_4$

$H_2=H_2-M_4*L_1/(4*EI)$.

And one can also assume for M_4 of fig.7b a direction to the right instead of to the left.

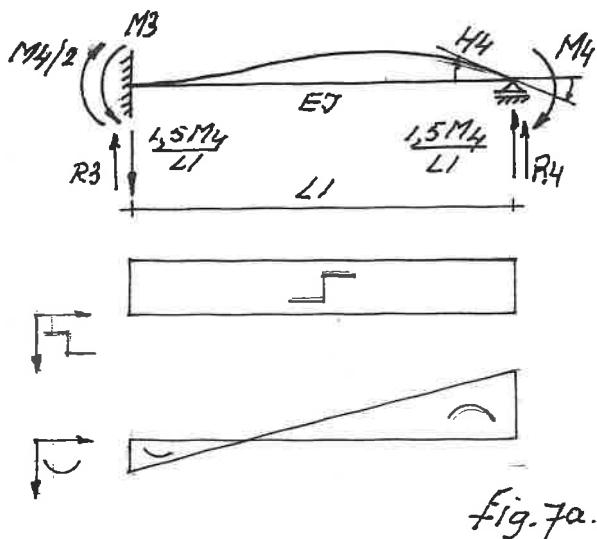


Fig.7a.

```

If LE(P)=0 Then
  R3=-1.5*M4/L1 : R4=1.5*M4/L1
  M3=-M4/2 : H4=M4*L1/(4*EI)
  R1=R1+R3 : R2=R2+R4 : M1=M1+M3
  M2=M4 : H2=H2+H4

ElseIf LE(P)=1 Then
  R3=1.5*M4/L1 : R4=-1.5*M4/L1
  M3=-M4/2 : H4=M4*L1/(4*EI)
  R1=R1+R3 : R2=R2+R4 : M2=M2+M3
  M1=M4 : H1=H1-H4
End If

End Sub

```

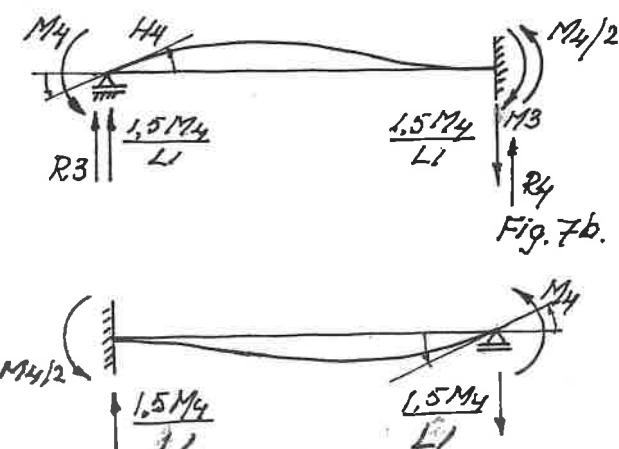
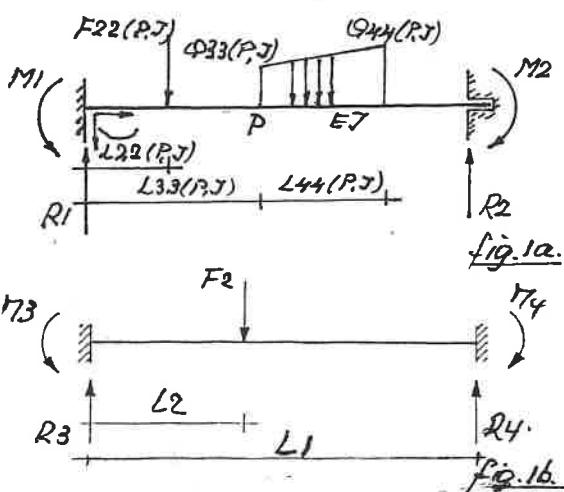


Fig.7b.

Fig.8.



Private Sub BEAM3()

The twofold statically indeterminate beam on two supports.

Fig.1a en ib.

For each load case the reactions R_3 , R_4 , M_3 and M_4 are calculated and added to preceding values of R_1 , R_2 , M_1 and M_2 which are made zero before. Per belastinggeval worden de reacties R_3 , R_4 , $R_1=0$: $R_2=0$: $M_1=0$: $M_2=0$

At the clamps the slopes are zero
 $H_1=0$: $H_2=0$.

The concentrated loads.

Fig.2a.

For $I=1$ To $NFB(P)$
 $F_2=F22(P,I)$: $L_2=L22(P,I)$

The beam is clamped on the left under a slope $H_1=0$ and is loaded by member load force F_2 and the reaction force R_4 and reaction moment M_4 . Displacement and slope of B are zero. That gives two equations from which R_4 and M_4 are solved. This is done by solving x and y from two equations as given here below.

$ax + by = c$
 $dx + ey = f$ Solution of x and y gives

$$x = \{c - b(cd - af)\} / (db - ae) / a \quad \text{and}$$

$$y = (cd - af) / (db - ae)$$

That becomes subroutine TWOEQUATIONS, see next page at the bottom.

Fig.2b, 2c en 2d.

Due to F_2 arises $H_5=F2*L2^2/(2*EI)$, then displacement Z_1 becomes

$$Z_1=F2*L2^3/(3*EI)+H5*(L1-L2).$$

Due to R_4 arises $Z_2=R4*L1^3/(3*EI)$
 and due to M_4 $Z_3=M4*L1^2/(2*EI)$.

The displacement of B is zero.

$$Z_1 - Z_2 + Z_3 = 0 \quad \text{or} \quad Z_2 - Z_3 = Z_1.$$

That becomes the equation $A*R_4 + B*M_4 = C$.
 A, B and C then are
 $A=L1^3/(3*EI)$: $B=-L1^2/(2*EI)$: $C=Z_1$.

The slopes at the member end due to F_2 , R_4 and M_4 then are

$$H_5=F2*L2^2/(2*EI),$$

$$H_8=R4*L1^2/(2*EI) \quad \text{and}$$

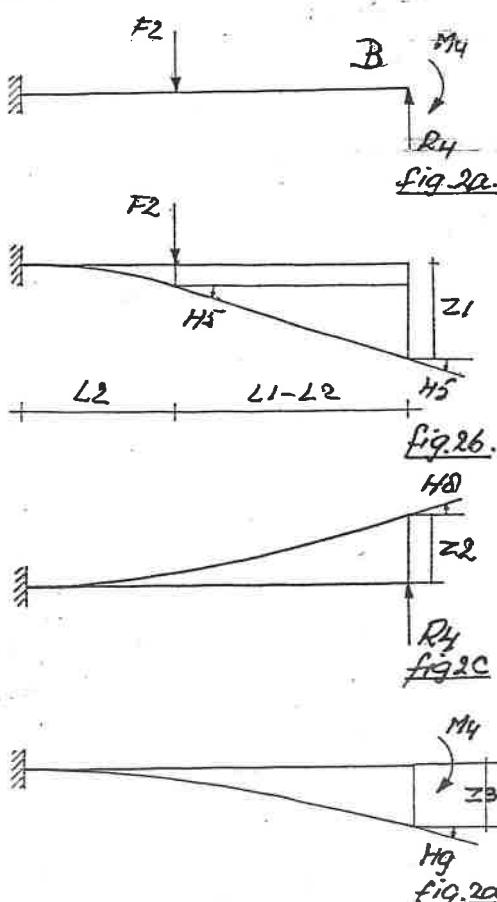
$$H_9=M4*L1/EI.$$

The slope at B is zero.

$$H_5 - H_8 + H_9 = 0 \quad \text{or} \quad H_8 - H_9 = H_5.$$

The second equation is $D*R_4 + E*M_4 = F$.
 D, E and F then are
 $D=L1^2/(2*EI)$: $E=-L1/EI$: $F=H_5$.

With subroutine TWOEQUATIONS the unknowns R_4 and M_4 are solved from the equations after which R_3 and R_4 can be calculated.



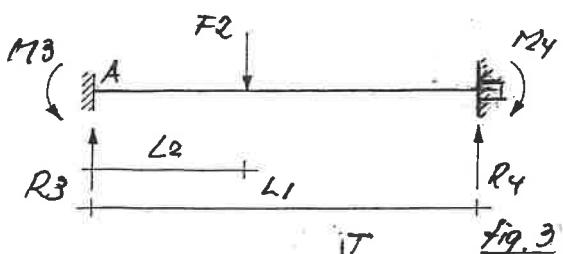


Fig.3.

$$\Sigma \text{ mom. A} = 0$$

$$F2 * L2 - R4 * L1 + M4 - M3 = 0 \Rightarrow M3 = F2 * L2 - R4 * L1 + M4$$

$$\Sigma \text{ vert.} = 0$$

$$R3 + R4 - F2 = 0 \Rightarrow R3 = F2 - R4$$

Now all four reactions are known follow
 $R1 = R1 + R3 : R2 = R2 + R4 : M1 = M1 + M3 : M2 = M2 + M4$
and then the next concentrated load with
Next I.

The distributed loads.

Fig.4a, 4b, 4c en 4d.

For $I=1$ To NQB(P)

$$Q3 = Q33(P, I) : L3 = L33(P, I)$$

$$Q4 = Q44(P, I) : L4 = L44(P, I)$$

Before calling subroutine QLOAD page 33 first becomes $L5 = L1 - L3 - L4$. Next follows QLOAD which calculates T, A1, Z1 and H7.

As for the concentrated loads follow the displacements due to R4 and M4.

$$Z2 = R4 * L1^3 / (3 * EI)$$

$$Z3 = M4 * L1^2 / (2 * EI)$$

The displacement of B is zero.

$$Z1 - Z2 + Z3 = 0 \quad \text{or} \quad Z2 - Z3 = Z1.$$

The first equation is

$$A * R4 + B * M4 = C.$$

$$ax + by = c$$

Then A, B and C become

en volgen voor A, B en C

$$A = L1^3 / (3 * EI) : B = -L1^2 / (2 * EI) : C = Z1.$$

The slopes at B are H7 due to the distributed load which was calculated with QLOAD, and H8 and H9 due to R4 and M4.

$$H8 = R4 * L1^2 / (2 * EI)$$

$$H9 = M4 * L1 / EI$$

The slope at B is zero.

$$H7 - H8 + H9 = 0 \quad \text{or}$$

The second equation is

$$H8 - H9 = H7.$$

$$D * R4 + E * M4 = F.$$

$$dx + ey = f$$

D, E en F become

$$D = L1^2 / (2 * EI) : E = -L1 / EI : F = H7.$$

With subroutine TWOEQUATIONS of which the code is shown on the left below, follow R4 and M4 and then the reactions R3 and M3 can be calculated.

Fig.4a.

$$\Sigma \text{ mom. A} = 0$$

$$T * (L3 + A1) - R4 * L1 + M4 - M3 = 0 \Rightarrow M3 = T * (L3 + A1) - R4 * L1 + M4$$

$$\Sigma \text{ vert.} = 0$$

$$R3 + R4 - T = 0 \Rightarrow R3 = T - R4$$

Next these calculated values are added to the already determinated values.

$$R1 = R1 + R3 : R2 = R2 + R4 : M1 = M1 + M3 : M2 = M2 + M4$$

And then follows the next distributed load with

Next I and finally

End Sub

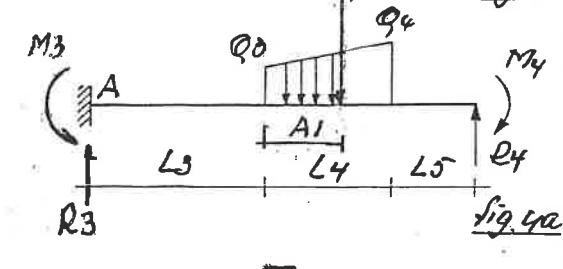
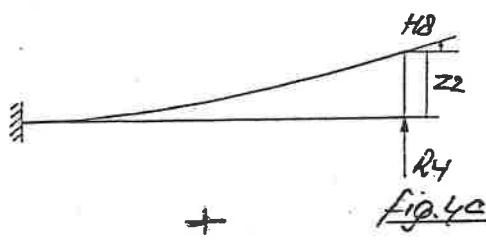


fig.4a



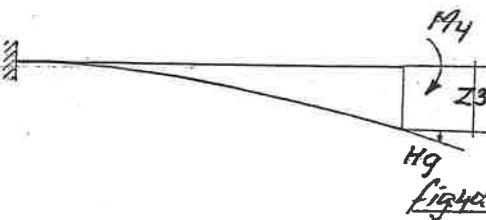
=

fig.4b



+

fig.4c



+

fig.4d

The distributed loads.

For $I=1$ To NQB(P)

$$Q3 = Q33(P, I) : L3 = L33(P, I)$$

$$Q4 = Q44(P, I) : L4 = L44(P, I)$$

$$L5 = L1 - L3 - L4$$

QLOAD

$$A = L1^3 / (3 * EI) : B = -L1^2 / (2 * EI)$$

$$C = Z1$$

$$D = L1^2 / (2 * EI) : E = -L1 / EI : F = H7$$

TWOEQUATIONS

$$M3 = T * (L3 + A1) - R4 * L1 + M4 : R3 = T - R4$$

$$R1 = R1 + R3 : R2 = R2 + R4$$

$$M1 = M1 + M3 : M2 = M2 + M4$$

Next I

End Sub

Private Sub TWOEQUATIONS()

$$R4 = (C - B * (C * D - A * F) / (D * B - A * E)) / A$$

$$M4 = (C * D - A * F) / (D * B - A * E)$$

End Sub

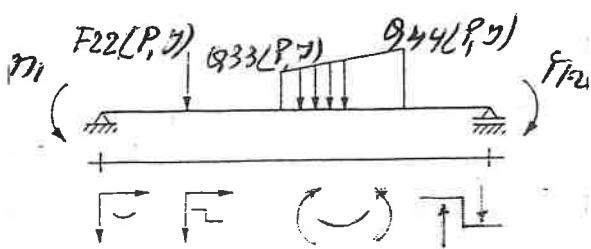
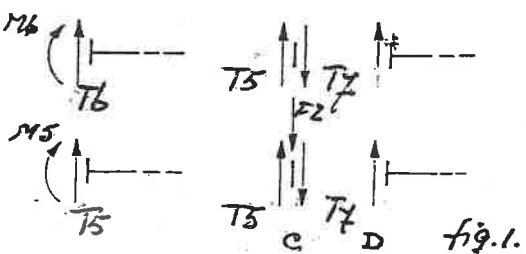
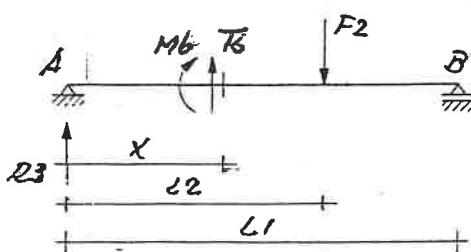


Fig.2a.

Private Sub T5M5XX()

'Calculation of transverse force T5 and T7, and bending moment M5 at 'X meter from the 'left'
 $L1=L11(P)$
 $T5=0 : T7=0 : M5=0$

'The concentrated loads.

```

For I=1 To NFB(P)
F2=F22(P,I) : L2=L22(P,I)
R3=F2*(L1-L2)/L1
If X<=L2 Then
T6=R3 : M6=R3*X
ElseIf X>L2 Then
T6=R3-F2 : M6=R3*X-F2*(X-L2)
End If
T5=T5+T6 : T7=T7+T6 : M5=M5+M6
If X=L2 Then
T7=T5-F2
End If
Next I
  
```

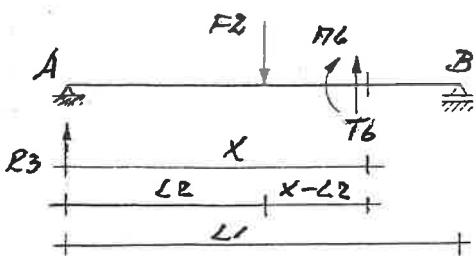


Fig.2b.

Private Sub T5M5XX()

Calculation of transverse/shear force and bending moment at X meter from the 'left'. For a beam means 'left' the beam end where the beam axes system is placed.

Fig.1.

At X meter from the left member end transverse force T5 and bending moment M5 are calculated from 'left onto right'. Then transverse force T5 is according to the shear sign directed upward, and bending moment M5 according to the bending sign to the right.

For each of the NFB(P) concentrated loads, and each of the NQB(P) distributed loads, and for the member end moments M1 and M2, transverse force T6 and moment M6 are calculated which are added to the preceding values of T5 and M5.

Before the start values are T5=0 and M5=0. Also transverse force T7 on the right of the section is calculated. The assumed direction of T7 from 'right onto left' is according to the shear sign directed downward. Before T7=0. Beam length $L1=L11(P)$.

'The concentrated loads.

Fig.2a.

For I=1 To NFB(P)
 $F2=F22(P,I) : L2=L22(P,I)$

First reaction R3 is calculated.

Σ mom. B=0

$R3*L1-F2*(L1-L2)=0$ from which follows

$$R3=F2*(L1-L2)/L1.$$

Is $X < L2$ then $T6=R3$ and $M6=R3*X$.

Is $X=L2$ then $F2$ stands 'on the section'. Also then is $T6=R3$, this is the transverse force just on the left of the section. And the moment is, of course, also now $M6=R3*X$.

Fig.2b.

Is $X > L2$ then is $T6=R3-F2$. Transverse force T is the resultant of R3 and F2.

The resulting moment is $M6=R3*X-F2*(X-L2)$.

After that the calculated values are added to the preceding values with
 $T5=T5+T6 : T7=T7+T6 : M5=M5+M6$.

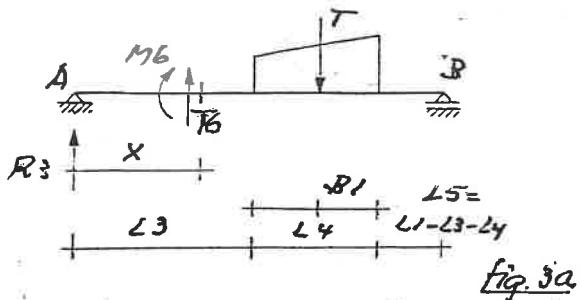
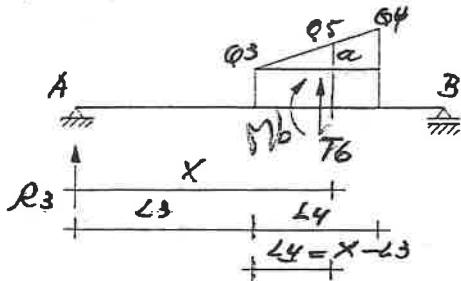
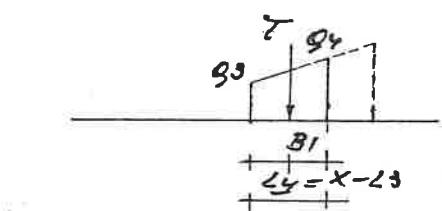
Transverse force T5 and T7 are equal in magnitude and opposite directed, if 'between' the two there is no concentrated load F2.

Is $X=L2$ then F2 stand on the section and are T5 on the left, and T7 on the right, not equal in magnitude.

With Σ vert. =0 of the section, see fig.1, is $T5-F2-T7=0$ from which follows $T7=T5-F2$. T7 upward acting on section D on the right of C is the resultant of T5 and F2. Also is $T7=T7-F2$.

Then the next concentrated load with

Next I.



The distributed loads.

For $I=1$ To $NQB(P)$

$Q3=Q33(P, I) : L3=L33(P, I)$

$Q4=Q44(P, I) : L4=L44(P, I)$

QLOAD

$R3=T^*(B1+(L1-L3-L4))/L1$

If $X \leq L3$ Then

$T6=R3 : M6=R3*X$

Else If $X > L3$ And $X \leq L3+L4$ Then

$Q5=Q3+(Q4-Q3)*(X-L3)/L4$

$Q4=Q5 : L4=X-L3$

QLOAD

$T6=R3-T : M6=R3*X-T*B1$

Else If $X > L3+L4$ Then

QLOAD

$T6=R3-T : M6=R3*X-T*(X-L3-L4+B1)$

End If

$T5=T5+T6 : T7=T7+T6 : M5=M5+M6$

Next I

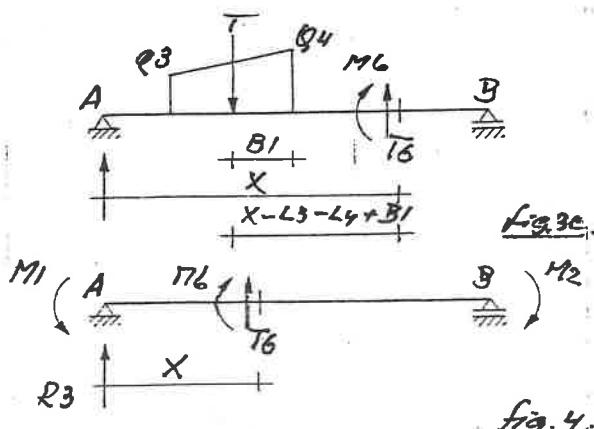
The member end moments $M1$ and $M2$.

$R3=(M1-M2)/L1$

$T6=R3 : M6=R3*X-M1$

$T5=T5+T6 : T7=T7+T6 : M5=M5+M6$

End Sub



The distributed loads.

Fig. 3a.

For $I=1$ To $NQB(P)$

$Q3=Q33(P, I) : L3=L33(P, I)$

$Q4=Q44(P, I) : L4=L44(P, I)$

With subroutine

QLOAD (page 3)

resultant T of the distributed load and distance $B1$ are calculated.

Now reaction $R3$ can be calculated.

worden onder andere resultante T van de verdeelde belasting, en afstand $B1$ berekend.

Σ mom. $B=0$

$R3*T1-B1*(B1+(L1-L3-L4))$ from which follows

$R3=T*(B1+(L1-L3-L4))/L1$.

Is $X \leq L3$ then follows like with the concentrated loads

$T6=R3 : M6=R3*X$.

Fig. 3b.

Is $X > L3$ ($X=L3$ has been already) and $X \leq L3+L4$ then a part of the trapeziumform distributed load is needed. For that $Q5$ is calculated.

With similarity of triangles follows

$a/(Q4-Q3)=(X-L3)/L4$ from which

$a=(Q4-Q3)*(X-L3)/L4$ so that

$Q5=Q3+(Q4-Q3)*(X-L3)/L4$.

First for this trapeze are determinated new values of $Q4$ and $L4$,

$Q4=Q5 : L4=X-L3$.

Next once again with subroutine

QLOAD

resultant T and distance $B1$ can be calculated.

$T6=R3-T$ is the resultant of $R3$ and T .

$M6=R3*X-T*B1$ is the resulting moment of the moments $R3*X$ and $T*B1$.

The altered $Q4$ and $L4$ donot need to get back their original value because before the next distributed load first follows again

$Q4=Q44(P, I)$ en $L4=L44(P, I)$.

Fig. 3c.

Finally, is $X > L3+L4$ then follows with subroutine

QLOAD

the calculation of T and $B1$. Then become

$T6=R3-T$ and $M6=R3*X-T*(X-L3-L4+B1)$. And after

End If

$\bar{T}5=\bar{T}5+\bar{T}6 : \bar{T}7=\bar{T}7+\bar{T}6 : M5=\bar{M}5+\bar{M}6$.

And then the next distributed load with

Next I.

The member end moments $M1$ and $M2$.

Fig. 4.

With Σ mom. $B=0$ follows $R3*L1+M2-M1=0$ from which

$R3=(M2+M1)/L1$, so that

$\bar{T}6=\bar{R}3 : M6=\bar{R}3*X-M1$ and next again

$T5=T5+T6 : T7=T7+T6 : M5=M5+M6$.

And then the end of the subroutine with

End Sub.

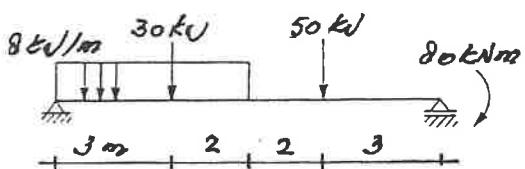
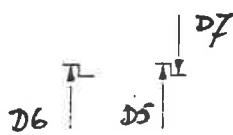


fig. 1

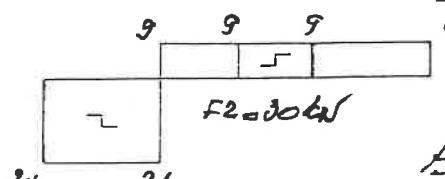


fig. 2a

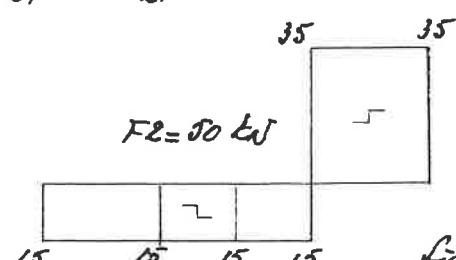


fig. 2b

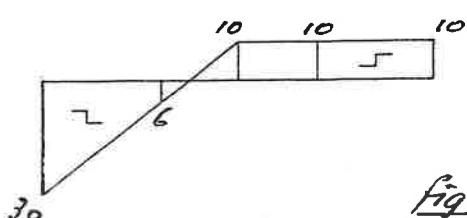


fig. 2c

fig. 2d

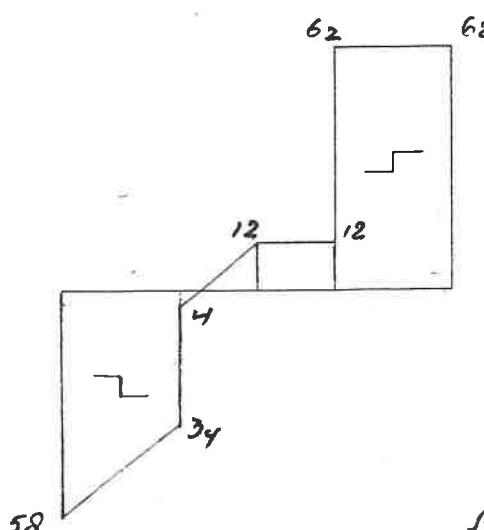


fig. 2e

Example.

Calculation of transverse forces with subroutine T5M5XX.

Fig.1.

For a given distance X from the left for each of the four load cases transverse force $T6$ is calculated, from left onto right as assumed directed upward.

After each calculation follows $T5=T5+T6$ and $T7=T7+T6$ and at the place of the concentrated load becomes $T7=T7-F2$.

Fig.2a, 2b, 2c en 2d.

The transverse force diagram for the concentrated loads of 30 and 50 kN, the uniformly distributed load of 8 kN/m and the member end moment of 80 kNm.

Fig. 2e.

The final transverse force diagram is the sum of fig.2a to 2d.

Here below is shown the order of calculation.

$X=0 \text{ m}$	$T5=0 \text{ kN}$	$T7=0 \text{ kN}$
$T6=21 \text{ kN}$	$T5=0+21=21 \text{ kN}$	$T7=0+21=21 \text{ kN}$
$T6=15$	$T5=21+15=36$	$T7=21+15=36$
$T6=30$	$T5=36+30=66$	$T7=36+30=66$
$T6=-8$	$T5=66-8=58$	$T7=66-8=58$

$X=3 \text{ m}$	$T5=0 \text{ kN}$	$T7=0 \text{ kN}$
Just left of the concentrated load of 30 kN is		
$T6=21 \text{ kN}$	$T5=0+21=21 \text{ kN}$	$T7=0+21=21 \text{ kN}$

But $X=L2$ and $F2=30 \text{ kN}$ so that just right of the concentrated load $T7=T5-F2=21-30=-9 \text{ kN}$
A negative answer, $T7$ from right onto left, is not directed downward but upward, thus another shear sign, above the zero line.

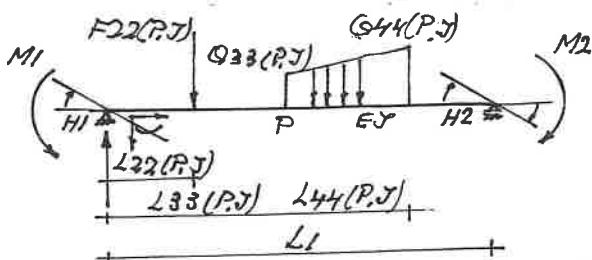
$T6=15$	$T5=21+15=36$	$T7=-9+15=6$
$T6=6$	$T5=36+6=42$	$T7=6+6=12$
$T6=-8$	$T5=42-8=34$	$T7=12-8=4$
If the calculation gives a negative answer for $T6$, then $T6$ from left onto right is not directed upward as assumed, but downward, thus the opposite shear sign.		

$X=5 \text{ m}$	$T5=0 \text{ kN}$	$T7=0 \text{ kN}$
$T6=-9 \text{ kN}$	$T5=0-9=-9 \text{ kN}$	$T7=0-9=-9 \text{ kN}$
$T6=15$	$T5=-9+15=6$	$T7=-9+15=6$
-10	$T5=6-10=-4$	$T7=6-10=-4$
$T6=-8$	$T5=-4-8=-12$	$T7=-4-8=-12$

$X=7 \text{ m}$	$T5=0 \text{ kN}$	$T7=0 \text{ kN}$
$T6=-9 \text{ kN}$	$T5=0-9=-9 \text{ kN}$	$T7=0-9=-9 \text{ kN}$
$T6=15$	$T5=-9+15=6$	$T7=-9+15=6$

$X=L2$ en $F2=50 \text{ kN}$ so that $T7=T7-F2=6-50=-44$

$T6=-10$	$T5=6-10=-4$	$T7=-44-10=-54$
$T6=-8$	$T5=-4-8=-12$	$T7=-54-8=-62$



Private Sub T5M5X()

Calculation of transverse force and bending moment at X meter from the 'left', after using one of the subroutines BEAM1, BEAM2, or BEAM3.

Fig.1.

The calculated reactions R1 and R2, and eventually M1 and M2 when not being member end loads, arise due to all beam loads.

Directions of transverse forces and bending moments are like on page following from shear sign and bending sign belonging to the beam axis system.

Beam length is $L1=L11(P)$.

At the beginning the transverse forces are $T5=R1$: $T7=R1$ for $X=0$, and the bending moment, $M5$ is assumed to the right and $M1$ is assumed to the left, so $M5=-M1$.

Fig.2a.

At distance X start values $T5$, $T7$ are equal to the values in the beginning.

Fig.2b.

But reaction $R1$, due to all loads, gives a moment at X of $R1*X$ to the right. So for that section at X the start value becomes $M5=M5+R1*X$.

Shorter, $T5=R1$: $T7=R1$: $M5=-M1+R1*X$.

The concentrated loads.

For I= 1 To NFB(P)
 $F2=F22(P,I)$: $L2=L22(P,I)$

Private Sub T5M5X()
 'Calculation of transverse force 'T5 and T7, and bending moment M5 'at X meter from the 'left'.
 $L1=L11(P)$

$T5=R1$: $T7=R1$: $M5=-M1$

$M5=M5+R1*X$

'The concentrated loads,

For I= 1 To NFB(P)
 $F2=F22(P,I)$: $L2=L22(P,I)$

If $X>L2$ Then

$T5=T5-F2$: $T7=T7-F2$
 $M5=M5-F2*(X-L2)$

ElseIf $X=L2$ Then

$T7=T7-F2$

ElseIf $X<L2$ Then

Exit For

End If

Next I

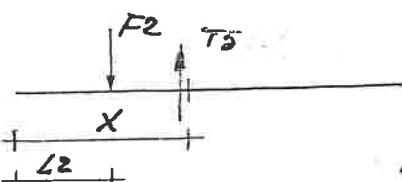


Fig.3a.

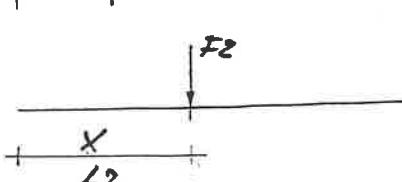


Fig.3a.

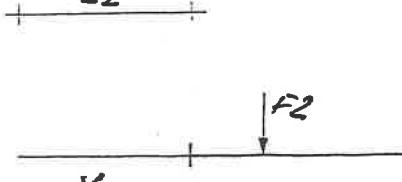


Fig.3a.

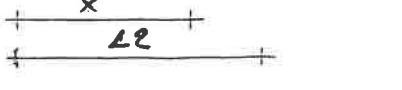


Fig.3a.

Fig.3b.

ElseIf $X=L2$ Then

In this case $T5$ left of the section does not change, but $T7$ right of the section does. $T7$ acting upward from left onto right on the section right of $F2$ is the resultant of the preceding $T7$ and $F2$, so $T7=T7-F2$.

Moment $M5$ does not change, has the preceding value.

All load forces $F2$ with $X<L2$ do not contribute. Therefore is written to leave the For-Next

ElseIf $X<L2$ Then

Exit For

End If

Next I

That's done 'save time' but with a few forces it is of no use.

By the way, this Exit For is only then correct when the load forces are numbered, put in, from left to right successively.

The distributed loads.

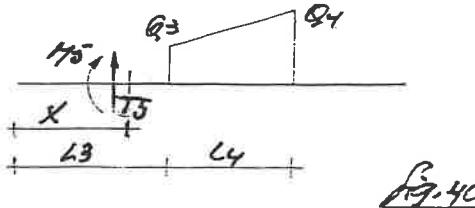


fig. 4a.

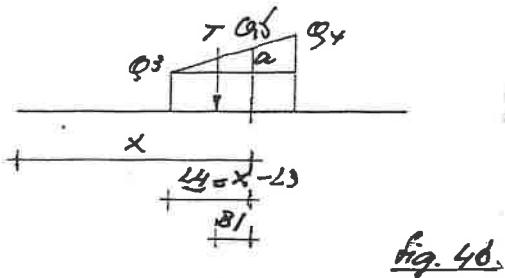


fig. 4b.

The distributed loads.

```

For I=1 To NQB(P)
  Q3=Q33(P,I) : L3=L33(P,I)
  Q4=Q44(P,I) : L4=L44(P,I)
  If X>L3 Then
    If X>L3 And X<=L3+L4 Then
      Q5=Q3+(Q4-Q3)*(X-L3)/L4
      T=0.5*(Q3+Q5)*(X-L3)
      B1=(2*Q3+Q5)*(X-L3)/(3*(Q3+Q5))
      T5=T5-T : T7=T7-T
      M5=M5-T*B1
    ElseIf X>L3+L4 Then
      T=0.5*(Q3+Q4)*L4
      B1=(2*Q3+Q4)*L4/(3*(Q3+Q4))
      T5=T5-T : T7=T7-T
      M5=M5-T*(B1+(X-L3-L4))
    End If
  End If
  Next I
End Sub

```

The distributed loads.

For I=1 To NQB(P)
 $Q3=Q33(P,I) : L3=L33(P,I)$
 $Q4=Q44(P,I) : L4=L44(P,I)$

Fig. 4a.

Is $X \leq L3$ then the calculated $T5$, $T7$ and $M5$ for X from the left do not change.

Fig. 4b and 4c.

When X is larger than $X3$, then $T5$, $T7$ and $M5$ change and one of the two possible calculations is carried out. Therefore the first If-End with If $X > L3$ then.

The first possibility.

Fig. 4b.

If $X > L3$ And $X \leq L3+L4$ Then
 The influence of the part of the distributed load left of the section is calculated. For that $Q5$ is calculated as follows.

$$a/(Q4-Q3) = (X-L3)/L4 \text{ or } a = (Q4-Q3)*(X-L3)/L4$$

so that

$$Q5 = Q3 + (Q4-Q3)*(X-L3)/L4.$$

The resultant T of that part of the distributed load is

$$T = 0.5*(Q3+Q5)*(X-L3)$$

and distance $B1$ becomes, see page
 $B1 = (2*Q3+Q5)*(X-L3)/(3*(Q3+Q5))$, and then follow

$$T5 = T5 - T : T7 = T7 - T \text{ and}$$

$$M5 = M5 - T * B1.$$

The second possibility.

Fig. 4c.

ElseIf $X > L3+L4$ Then
 Now the total distributed load is on the left of the section. Then follow as before

$$T = 0.5*(Q3+Q4)*L4 \text{ and}$$

$$B1 = (2*Q3+Q4)*L4/(3*(Q3+Q4)) \text{ and then become}$$

$$T5 = T5 - T : T7 = T7 - T \text{ and the bending moment}$$

$$M5 = M5 - T * (B1 + (X - L3 - L4)).$$

Then two times End If and then the next distributed load with
 Next I and finally

End Sub

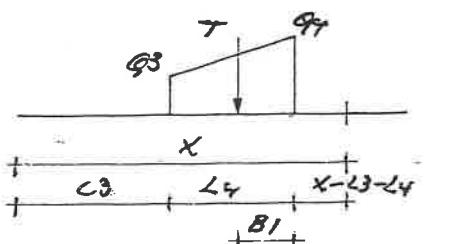


fig. 4c.

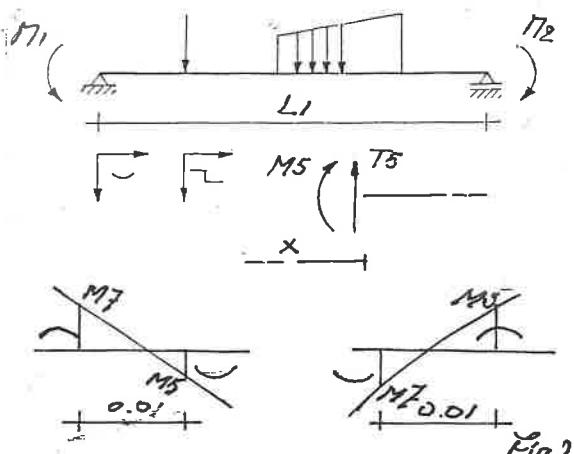


Fig.2.

Private Sub MMAXM5()

'Calculation of the largest bending moment and the moment zero points.
NM=0 : L1=L11(P)

For X=0 To L1+0.01 Step 0.01
T5M5XX

If X=0 Then

M7=M5 : T3=T5

NM=NM+1

MMAXX(P,NM)=M5 : LM(P,NM)=X

ElseIf X>0 And X<L1 Then

If M5>=0 And M7<0 Or
M5<=0 And M7>0 Then

NM=NM+1

MMAXX(P,NM)=M5 : LM(P,NM)=X

End If

M7=M5

If T5<=0 And T3>0 Or
T5>=0 And T3<0 Then

NM=NM+1

MMAXX(P,NM)=M5 : LM(P,NM)=X

End If

T3=T5

ElseIf X>=L1 Then

X=L1 : T5M5XX

NM=NM+1

MMAXX(P,NM)=M5 : LM(P,NM)=X

End If

Next X

End Sub

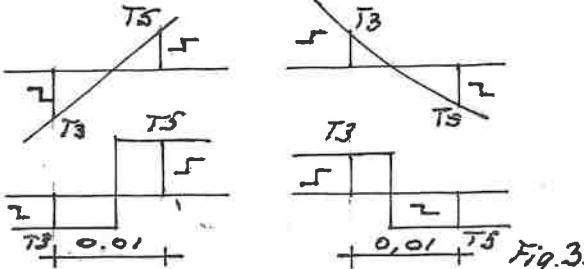


Fig.3.

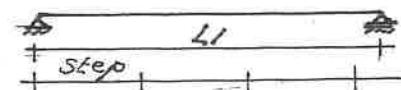


Fig.4.

Private Sub MMAXM5()

Calculation of maximum moments and moment zero points which are stored in MMAXX(P,NM) and their distances X from the 'left' in LM(P,NM). Start value of counter NM=0.

Fig.1

For X=0 To L1+0.01 Step 0.01

T5M5XX (page 9)

At each centimeter transverse force T5 and bending moment M5 are calculated.

If X=0 Then

The first values to compare with become
M7=M5 : T3=T5.

The moment is stored, it might be the largest moment in case of a clamp.

(Or M7=-M1 and T5=R1, the values found with BEAM1, BEAM2 or BEAM3.)

ElseIf X>0 And X<L1 Then

The new values T5 and M5 have been calculated with T5M5XX and are compared with the preceding values.

The moment zero points.

Fig.2.

There are two possible ways how the bending moment line can pass the zero line, a curve or straight line. If one of the conditions is satisfied then moment and distance are stored. After If-End If the new value to compare with becomes M7=M5.

The maximum moments.

Fig.3.

A maximum moment occurs when the transverse force line passes the zero line.

Also in this case two possibilities.

After If-End If the new value to compare with becomes T3=T5.

ElseIf X>=L1+0.01 Then

Fig.4.

Depending on length L1 and step size, X can be equal or larger than L1. If X is larger than L1 then X becomes X=L1 and M5 is calculated with T5M5XX, and stored.

(Or M5=-M2.)

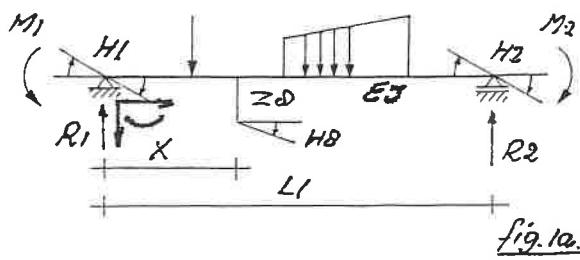
Next X

End Sub

Later the largest absolute value of all found values will be determined. (page 9)

Remark. As step size is taken 1 cm, accurate enough. With 0.001 meter, an error occurs, after ElseIf X>=L1. Subscript out of range, NM not large enough of MMAX(P,NM) no matter how large NM is in the declaration. For X=L1 the calculation is carried out again and again, but why....? To avoid this one can write just before End If, Exit For. In that case the calculation for X=L1 will be carried out just one time.

Private Sub H8Z8XX()



Calculation of slope deflection H_8 and displacement Z_8 at X meter from the 'left', the member end where the member axes system is placed. H_8 assumed to the right, Z_8 assumed downward.

First start values $H_8=0$ and $Z_8=0$

Fig.1a.

Due to all loads together, NFB(P) concentrated load forces, NQB(P) distributed loads, and the moments M_1 and M_2 , arise the reactions R_1 and R_2 , and the slope deflections H_1 and H_2 .

Slope deflection H_9 and displacement Z_9 due to angle H_1 .

Fig.1b.

If the unloaded beam is thought to clamped under angle H_1 , assumed to the right, then become

$H_9=H_1$ to the right and

$Z_9=H_1 \cdot X$ downward.

H_9 and Z_9 due to reaction R_2 .

Fig.1c.

The beam now is clamped horizontally on the left at A. When loaded with R_2 then on the section at C arise, from right on to left, a force R_2 upward and a moment $M=R_2 \cdot (L_1 - X)$ to the left.

(Force R_2 is decomposed into a force R_2 at C and a couple with moment $R_2 \cdot (L_1 - X)$.)

R_2 is assumed upward then the beam bends as drawn in the figure.

Then follow

$$H_4 = R_2 \cdot X^2 / (2 \cdot EI) + M \cdot X / EI \quad \text{to the left and}$$

$$Z_4 = R_2 \cdot X^3 / (3 \cdot EI) + M \cdot X^2 / (2 \cdot EI) \quad \text{upward.}$$

The results of fig.1b and 1c are added to get H_8 and Z_8 found until now.

$$H_8 = H_9 - H_4 : Z_8 = Z_9 - Z_4.$$

H_9 and Z_9 due to the concentrated loads.

Fig.2a.

For $I=1$ To NFB(P)

$$F_2 = F_{22}(P, I) : L_2 = L_{22}(P, I)$$

The beam is clamped horizontally at A and loaded with force F_2 .

If $X \leq L_2$ Then

Due to this force arise from right onto left on the section a force F_2 downward and a moment $M=F_2 \cdot (L_2 - X)$ to the right.

The beam bends by F_2 is drawn and gives the H_9 and Z_9 as the figure shows. Then follow applying the formulas like used for Fig 1c

$$H_9 = F_2 \cdot X^2 / (2 \cdot EI) + M \cdot X^2 / EI \quad \text{to the right and}$$

$$Z_9 = F_2 \cdot X^3 / (3 \cdot EI) + M \cdot X^2 / (2 \cdot EI).$$

Private Sub H8Z8XX()
 'Calculation of slope deflection H_8
 'and displacement Z_8 at X meter
 'from the left.

$$L_1 = L_{11}(P)$$

$$H_8 = 0 : Z_8 = 0$$

'Due to angle H_1 .
 $H_9 = H_1 : Z_9 = H_1 \cdot X$

'Due to the reaction R_2 .

$$M = R_2 \cdot (L_1 - X)$$

$$H_4 = R_2 \cdot X^2 / (2 \cdot EI) + M \cdot X / EI$$

$$Z_4 = R_2 \cdot X^3 / (3 \cdot EI) + M \cdot X^2 / (2 \cdot EI)$$

$$H_8 = H_9 - H_4 : Z_8 = Z_9 - Z_4$$

'The concentrated loads..

For $I=1$ To NFB(P)
 $F_2 = F_{22}(P, I) : L_2 = L_{22}(P, I)$

If $X \leq L_2$ Then
 $M = F_2 \cdot (L_2 - X)$
 $H_9 = F_2 \cdot X^2 / (2 \cdot EI) + M \cdot X / EI$
 $Z_9 = F_2 \cdot X^3 / (3 \cdot EI) + M \cdot X^2 / (2 \cdot EI)$

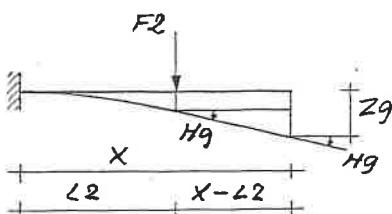


Fig.2e

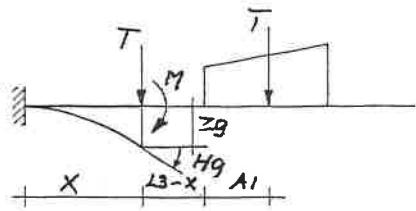


Fig.3a

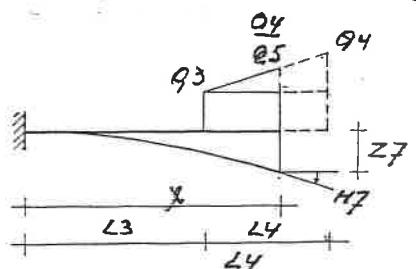


Fig.3b

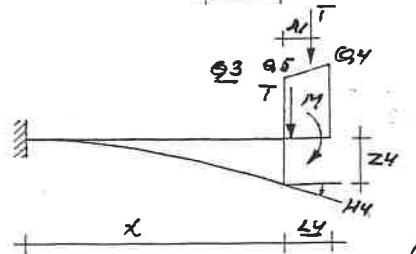


Fig.3c

Fig.2b.
ElseIf $X > L2$ Then

On the left of load force $F2$ the beam is bent and on the right of $F2$ the beam is straight. Then at the section at X arise

$$H9 = F2 * L2^2 / (2 * EI) \quad \text{and}$$

$$Z9 = F2 * L2^3 / (3 * EI) + H9 * (X - L2).$$

End If and then before Next I
 $H8 = H8 + H9 : Z8 = Z8 + Z9$ and then
 Next I for the next $F2 = F22(P, I)$.

H9 and Z9 due to the distributed loads.
 Fig.3a.

For $I = 1$ To $NQB(P)$

$$Q3 = Q33(P, I) : L3 = L33(P, I)$$

$$Q4 = Q44(P, I) : L4 = L44(P, I) \text{ and then first}$$

If $X \leq L3$ Then
 Then follows subroutine QLOAD (page 3) to calculate force T and distance $A1$.

At section C arise from right onto left force T downward and moment $M = T * (L3 - X + A1)$ to the right, then $H9$ and $Z9$ become

$$H9 = T * X^2 / (2 * EI) + M * X / EI \quad \text{and}$$

$$Z9 = T * X^3 / (3 * EI) + M * X^2 / (2 * EI).$$

Then after End If these values are added to the preceding values of $H8$ and $H9$,
 $H8 = H8 + H9 : Z8 = Z8 + Z9$ and then Next I, see next page.

Fig.3b.
 ElseIf $X > L3$ And $X < L3 + L4$ Then
 (see remark next page)

First the effect of the left part of the trapeze is considered. Again subroutine QLOAD is used but first $Q5$ is needed like on page 10.
 $Q5 = Q3 + (Q4 - Q3) * (X - L3) / L4.$

For the left part, a trapeze, become first
 $Q4 = Q5 : L4 = X - L3$ and then follows

QLOAD which gives $H7$ and $Z7$ and then become
 $H9 = H7 : Z9 = Z7.$

Fig.3c.
 Before calculating the effect of the right part of the trapeze some values are re-established, $Q4 = Q44(P, I) : L4 = L44(P, I)$ and after that for the 'new' trapeze become
 $Q3 = Q5 : L4 = L3 + L4 - X$ and then again QLOAD which gives T and $A1$. Thus a force T and a moment $M = T * A1$ which cause $H4$ And $Z4$,

$$H4 = T * X^2 / (2 * EI) + M * X / EI \quad \text{and}$$

$$Z4 = T * X^3 / (3 * EI) + M * X^2 / (2 * EI) \text{ which are added}$$

to the preceding values of $H9$ and $Z9$, sum of fig.3b and 3c, $H9 = H9 + H4 : Z9 = Z9 + Z4$ and then after End If

$H8 = H8 + H9 : Z8 = Z8 + Z9$ and next distributed load with Next I.

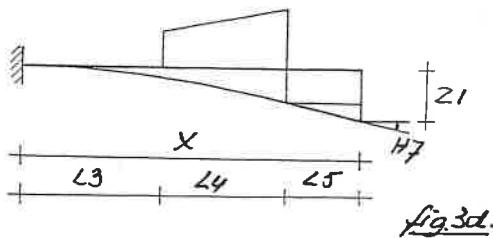


Fig.3d.

Fig.3d.
ElseIf $X \geq L3+L4$ Then

Again subroutine QLOAD is used but before distance L5 must be determined,
 $L5=X-L3-L4$.

Subroutine QLOAD gives slope deflection $H7$ and displacement $Z1$, after that become
 $H9=H7$: $Z9=Z1$ and after End If again

$H8=H8+H9$: $Z8=Z8+Z9$ and then
Next I.

$H9$ and $Z9$ due to member end moment $M2$.
Fig.4.

From the right end to the section at X meter from the left the bending moment is constant, so the moment is $M2$ to the right which bends the beam downward. Then become

$H9=M2*X/EI$: $Z9=M2*X^2/(2*EI)$ and added with
 $H8=H8+H9$: $Z8=Z8+Z9$.

Slope deflection $H9$ and displacement $Z9$ due to member end (support) displacements.

Fig.5.
LEZ is the displacement at the left member end, where the member axes system is placed, and REZ is the displacement at the right member end. Like $Z8$ the are assumed downward, and $REZ > LEZ$. (Or $REZ < LEZ$ but then the figure is else and $H9$ is then to the left instead of to the right, so the equation for $Z9$ will look different.) With similarity of triangles follows
 $Z/(REZ-LEZ)=X/L1$ or $Z=(REZ-LEZ)*X/L1$ so that

$Z9=LEZ+(REZ-LEZ)*X/L1$.

The tangent of $H9 \approx H9$ because the displacements are very small comparing with the length of the beam, so
 $H9=(REZ-LEZ)/L1$ and finally again
 $H8=H8+H9$: $Z8=Z8+Z9$

End Sub

Remark.

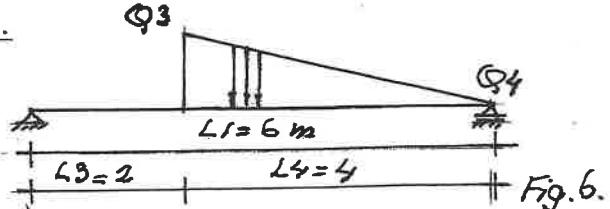


Fig.6.

Suppose $X=L1=6$.

Before the first QLOAD is

$$Q3=7$$

$$Q5=Q3+(Q4-Q3)*(X-L3)/L4 \text{ or}$$

$$Q5=7+(0-7)(4)/4=7-7*(1)=0$$

And with $Q4=Q5$ is $Q4=0$ and $L4=X-L3=4$.

So $Q3=7$, $Q4=0$ and $L4=4$ which gives no problem. See B1 below.

Then the second time before QLOAD.

$$Q4=Q44(P,I)=0 \text{ and } L4=L44(P,I)=4$$

$Q3=Q5$ is $Q3=0$.

$$L4=L3+L4-X=2+4-6=0$$

So $Q3=0$, $Q4=0$ and $L4=0$.

With subroutine QLOAD, page , Al is calculated, but first B1,

$$B1=(2*Q3+Q4)*L4/(3*(Q3+Q4)) \text{ and division by zero is not possible.}$$

Fig.6. See the comment on the left

Instead of writing
If $X > L3$ And $X \leq L3+L4$ is written

If $X > L3$ And $X < L3+L4$ (= sign is omitted).

And therefore not
 $X > L3+L4$ but $X \geq L3+L4$ (= sign is added)

If is written If $X > L3$ And $X \leq L3+L4$ Then the calculation leads to division by zero in cases like such as the figure shows where $L3+L4$ is equal to beam length $L1$.

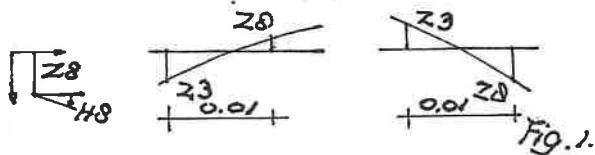


Fig.1.

```

Private Sub ZMAXZ8()
'Calculation of the largest dis-
'placement/bending and the ben-
'bding zero points.
NZ=0 : L1=L11(P) : EI=EII(P)
For X=0 To L1+0.01 Step 0.01
H8Z8XX      page /5

If X=0 Then
Z3=Z8 : H3=H8 : NZ=NZ+1
ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X

ElseIf X>0 And X<L1 Then

If Z8<=0 And Z3>0 Or
Z8>=0 And Z3<0 Then
NZ=NZ+1
ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X
End If
Z3=Z8

If H8<=0 And H3>0 Or
H8>=0 And H3<0 Then
NZ=NZ+1
ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X
End If
H3=H8

ElseIf X>=L1 Then
X=L1 : H8Z8XX
NZ=NZ+1
ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X
Exit For
End If

Next X

ZMAX=0
For I=1 To NZ
If Abs(ZMAXX(P,I))>Abs(ZMAX) Then
ZMAX=ZMAXX(P,NZ) : X=LZ(P,I)
End If
Next I
NZ=NZ+1
ZMAXX(P,NZ)=ZMAX : LZ(P,NZ)=X
NZZ(P)=NZ

End Sub

```

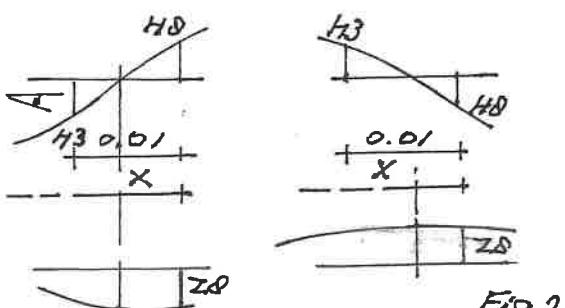


Fig.2

Private Sub ZMAXZ8()

Calculation of the largest displacement Z8 and the displacement zero points which are stored in ZMAXX(P,NZ) and their distances X from the 'left' in LZ(P,NZ). Start value counter NZ=0. See page 14 with subroutine MMAX5.

For X=0 To L1+0.01 Step 0.01
H8Z8XX

At each centimeter slope deflection H8 and displacement Z8 are calculated with subroutine H8Z8XX.

If X=0 Then

The first values to compare with become slope deflection H3=H8 and displacement Z3=Z8.

This first displacement and distance X is stored with

NZ=NZ+1

ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X.

ElseIf X>0 And X<L1 Then

The displacement zero points.

Fig.1.

There are two possibilities of the way the bending line passes the zero line,

If Z8>=0 And Z3<0 Or Z8<=0 And Z3>0.

If one of these two cases apply then storing, NZ=NZ+1

ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X.

This Z8 is zero, written is Z8 to see in the examples how close to zero the calculated value is.

After End If becomes Z3=Z8 for the comparison of the next calculated Z8 with Z3.

The maximum displacements.

Fig.2.

A maximum displacement occurs when the slope deflection line (elastic curve) passes the zero line. Also here two cases to check.

If H8>=0 And H3<0 Or H8<=0 And H3>0.

If a case applies displacement Z8 and distance X are stored like above.

After End If becomes H3=H8 for the comparison of the next H8 with H3.

ElseIf X>=L1 Then

X may be exactly L1, or larger, taken care of with L1+0.01. For X=L1 follows calculation with H8Z8XX and values are stored. Next Exit For because calculations may not stop...

After Next I the largest displacement is determined and added to the list of the already NZ values found.

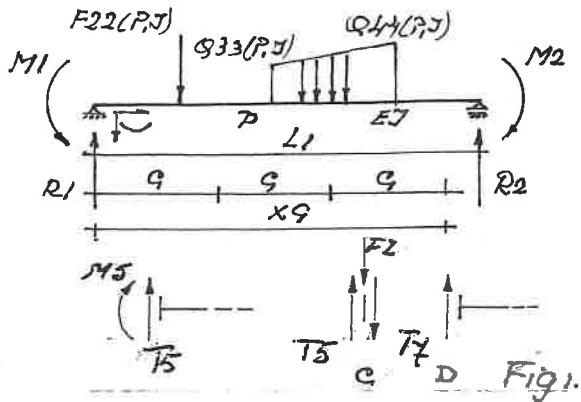
ZMAX is the value to compare with, start maximum value is ZMAX=0.

For I=1 To NZ

If Abs(ZMAXX(P,I))>Abs(ZMAX) Then, if so the largest is kept with ZMAX=ZMAXX(P,I) and the concerning distance with X=LZ(P,I).

After Next I the number of the largest found value is NZ=NZ+1, then

ZMAXX(P,NZ)=ZMAX : LZ(P,NZ)=X and the number of stored values is NZZ(P)=NZ.



Private Sub T5M5G()

Calculation of transverse forces T5 and T7 and bending moment M5 at each G meter and at the places of the concentrated loads. (See subroutine N5G for normal forces, page 4-19)

Fig.1.

The number of sections is counted with NB, start value NB=0, which will be stored with NBC(P)=NB after Next XG. (Or in subroutine T5M5 before End Sub.)

For XG=0 To L1+G Step G

If XG=0 Then

X=XG : T5M5XX and T5M5.

First becomes X=XG and then follows subroutine T5M5XX (page 9) to calculate T5, T7 and M5. After that with subroutine T5M5 the calculated values and the belonging distance are stored, first NB=NB+1 and then

LB(P,NB)=X

NBL(P,NB)=T5 on the left of the section, and NBR(P,NB)=T7 on the right of the section, NBM(P,NB)=M5 the bending moment at distance X from the 'left'.

(Or first X=0 : T5=R1 : T7=R1 : M5=-M1 : T5M5 instead of X=XG : T5M5XX.)

Fig.2 and 1.

ElseIf XG>0 And XG<L1 Then

Suppose there are load forces then next code is carried out.

For I1=1 To NFB(P)

L2=L22(P,I1)

The condition right of section C and up to section D is given with

If L2>XG-G And L2<XG Then,

for each I1 this condition is checked. If satisfied then follows for the force right of C and left of D

X=L2 : T5M5XX and T5M5.

End If

Next I1

For each step G given with XG the calculation will be carried out, if there is a load force on that section or not, so after Next I1

X=XG : T5M5XX and T5M5.

Fig.3.

ElseIf XG>=L1 And XG<L1+G Then

There is written XG<L1+G, and not XG<=L1+G with = sign. If XG=L1 then a calculation is carried out. With the next step is XG=L1+G and then after Next I1 one more time for distance X=L1 transverse forces T5 and T7, and bending moment M5 would be calculated. So no = sign.

This is the last condition to be checked. If XG>=L1 then there might be a part of a step G with load forces. So for

I1=1 To NFB(P) is L2=L22(P,I1) and follows

L2=L22(P,I1) and follows

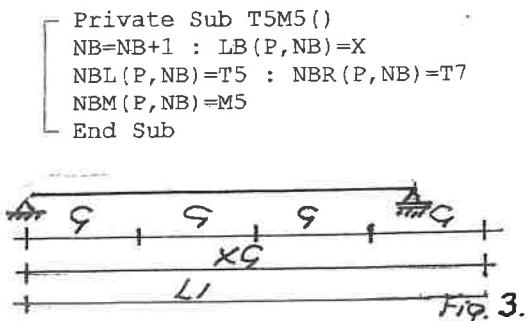
If L2>XG-G Then, and if so T5, T7 and M5 are calculated. And then finally after Next I1

X=L1 : T5M5XX and T5M5.

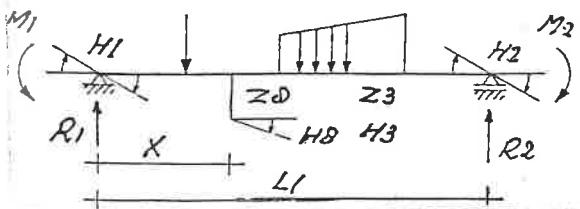
(Or instead, T5=-R2 : T7=-R2 : M5=-M2 : T5M5.)

After the last step after Next G becomes the number of sections NBC(P)=NB.

End Sub



Private Sub H8Z8G()



```

Private Sub H8Z8G()
NC=0 : L1=L11(P)
For XG=0 To L1+G Step G
If XG=0 Then
  X=XG : H8Z8XX
  H8Z8

ElseIf XG>0 And XG<L1 Then
  For I1=1 To NFB(P) : L2=L22(P,I1)
  If L2>XG-G And L2<XG Then
    X=L2 : H8Z8XX
    H8Z8
  End If
  Next I1 : X=XG : H8Z8XX
  H8Z8

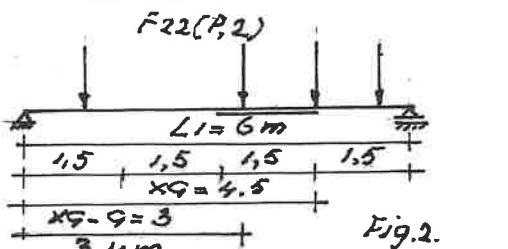
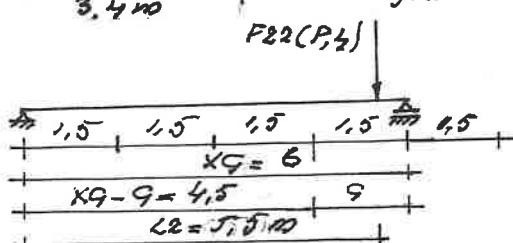
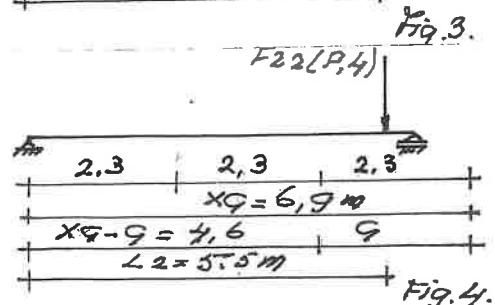
ElseIf XG>=L1 And XG<L1+G Then
  For I1=1 To NFB(P) : L2=L22(P,I1)
  If L2>XG-G Then
    X=L2 : H8Z8XX
    H8Z8
  End If
  Next I1 : X=L1 : H8Z8XX
  H8Z8
  End If
  Next XG : NCC(P)=NC
End Sub

```

```

Private Sub H8Z8()
NC=NC+1 : LC(P,NC)=X
NH8(P,NC)=H8 : NZ8(P,NC)=Z8
End Sub

```



Private Sub H8Z8G()

Fig.1.

Calculation of slope deflection H8 and displacement Z8 each G meter from the 'left' and at places of the concentrated load forces.

This subroutine is similar to subroutine T5M5G of the preceding page.

The sections are counted with NC. H8 and Z8 at distance X from the 'left' are calculated with subroutine H8Z8XX (page 15) and the results stored with subroutine H8Z8.

First NC=NC+1 and then the length X with LC(P,NC)=X, then slope deflection H8 with NH8(P,NC)=H8 and displacement Z8 with NZ8(P,NC)=Z8.

By the way, one cannot write code like X=L2 : H8Z8XX : H8Z8 because one subroutine must not follow another with : on the same line.

Considerations of step G, of importance for the transverse forces to be calculated on the preceding page.

Fig.2.

Here is 4 times step G=1.5 m equal to L1=6 m.

ElseIf XG>0 And XG<L1 Then

In this case step 4 is excluded. Suppose step 3 with two forces F22(P,I1).

I1=1 L2=L22(P,1)=2,6 m
L2=2,6>XG-G=4,5-1,5=3 And L2=2,6<XG=4,5 ?
2,6>3 And 2,6<4,5 ? no, next force.

I1=2 L2=L22(P,2)=3,4 m
L2=3,4>3 And L2=3,4<4,5 ? yes then X=L2=3,4 and H8 and Z8 are calculated.

I1=3 L2=L22(P,3)=4,5 m
L2=4,5>3 And L2=4,5<4,5 ? no, next force.

But at this place with F2 the calculation will be carried out after the last force is checked, so after Next I1. If there is not a force at this place the calculation will be carried out as well.

Fig.3.

For the step from 4,5 to 6 meter follows

ElseIf XG>=L1 And XG<L1+G Then

XG=6>=L1=6 And XG=6<6+1,5=7,5 ?

6>=6 And 6<7,5? yes

I1=4 L2=L22(P,4)=5,5 m
L2=5,5>XG-G=6-1,5=4,5 ? 5,5>4,5 ? yes, then X=L2 : H8Z8XX and H8Z8, and after Next I1 follows the calculation for X=L1.

Fig.4.

Now with step G=2.3 m. The third step.

ElseIf XG>=L1 And XG<L1+G Then

XG=6,9>=6 And XG=6,9<6+2,3=8,3 ? yes,

I1=4 L2=L22(P,4)=5,5 m

L2=5,5>XG-G=6,9-2,3=4,6 ? 5,5>4,6 ? yes, then

X=L2 : H8Z8XX and H8Z8, and after Next I1 follows the calculation for X=L1.

```

Private Sub CONSTRMATCCCBEAM
N=2*N9
For I=1 To N : For J=1 To N
  CC(I,J)=0 : Next J : Next I

```


Fig.1.

$$\begin{bmatrix}
 A & B & -A & B \\
 B & D & -B & E \\
 -A & -B & A & -B \\
 B & E & -B & D
 \end{bmatrix}
 \begin{bmatrix}
 1,1 & 1,2 & 1,3 & 1,4 \\
 2,1 & 2,2 & 2,3 & 2,4 \\
 3,1 & 3,2 & 3,3 & 3,4 \\
 4,1 & 4,2 & 4,3 & 4,4
 \end{bmatrix}$$

S5

```

For P=1 To P9 : L=LL(P) : H=HH(P)
EI=EI(P)
MEMBERMATS5CBEAM
TT(1)=2*L-1 : TT(2)=2*L
TT(3)=2*H-1 : TT(4)=2*H
For I=1 To 4 : I1=TT(I)
For J=1 To 4 : J1=TT(J)
CC(I1,J1)=CC(I1,J1)+S5(I,J)
Next J
Next I
Next P

```

End Sub

$$\begin{bmatrix}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 1 & . & . & . & . & . & . & . & . & . \\
 2 & . & . & . & . & . & . & . & . & . \\
 3 & . & . & . & . & . & . & . & . & . \\
 4 & . & . & . & . & . & . & . & . & . \\
 5 & . & . & . & . & . & . & . & . & . \\
 6 & . & . & . & . & . & . & . & . & . \\
 7 & . & . & . & . & . & . & . & . & . \\
 8 & . & . & . & . & . & . & . & . & . \\
 9 & . & . & . & . & . & . & . & . & . \\
10 & . & . & . & . & . & . & . & . & .
 \end{bmatrix}$$

CC

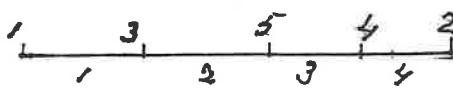


Fig.4.

$$\begin{bmatrix}
 J1=1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 I1=1 & . & . & . & . & . & . & . & . & .
 \end{bmatrix}$$

CC

Private Sub CONSTRMATCCCBEAM()

Forming construction stiffness matrix CC of continuous beams.

Fig.1.

This continuous beam is divided into $P9=4$ four members and $N9=5$ five joints which are regularly numbered.

For each joint I there is a vertical displacement $UV(I)$, and a joint rotation $UR(I)$.

The number of equations then is $N=2*N9=2*5=10$. First all elements of construction matrix CC are set zero.

For I=1 To N : For J=1 To N
CC(I,J)=0 : Next J : Next I

For each member P with lowest member end number $L=LL(P)$ and highest member end number $H=HH(P)$ is the bending stiffness $EI=EI(P)$.

With subroutine

MEMBERMATS5CBEAM (next page)
for each member the elements of member matrix S5 are calculated and after that placed in matrix CC.

Fig.2.

There are no hingy member ends, then the S5's look like as shown on the left, and there are no elements equal to zero. On the main diagonal of CC all elements have a value unequal to zero.

Each of the four rows I=1 To 4 of S5 are put into CC for J=1 To 4 with
CC(I1,J1)=CC(I1,J1)+S5(I,J).

Fig.3.

Because of the regular joint numbering arises in construction matrix CC a 'band' of elements around the main diagonal.

Fig.4.

With an unregular joint numbering the band disappears, matrix CC will look quite differently.

Take for example matrix S5 of member 4 with $L=2$ and $H=4$, then become

$TT(1)=2*L-1=2*2-1=3$ and $TT(2)=2*L=2*2=4$,
 $TT(3)=2*H-1=2*4-1=7$ and $TT(4)=2*H=2*4=8$.

Row I=1 with $I1=TT(1)=3$ and $J1=TT(J)=3, 4, 7, 8$,
row I=2 with $I1=TT(2)=4$ and $J1=TT(J)=3, 4, 7, 8$,
row I=3 with $I1=TT(3)=7$ and $J1=TT(J)=3, 4, 7, 8$.

Row I=4 met $I1=TT(4)=8$

J=1	J1=TT(J)=TT(1)=3	CC(8,3)=	0	+S5(4,1)
J=2	J1=TT(J)=TT(2)=4	CC(8,4)=	0	+S5(4,2)
J=3	J1=TT(J)=TT(3)=7	CC(8,7)=	CC(8,7)+S5(4,3)	
J=4	J1=TT(J)=TT(4)=8	CC(8,8)=	CC(8,8)+S5(4,4)	

CC(8,3) and CC(8,4) did not yet have a value, so still zero.

CC(8,7) had already the value S5(2,1), and CC(8,8) had already the value S5(2,2) of member 3.

It is the joint numbering which determines how matrix CC will look like, and not the member numbering.

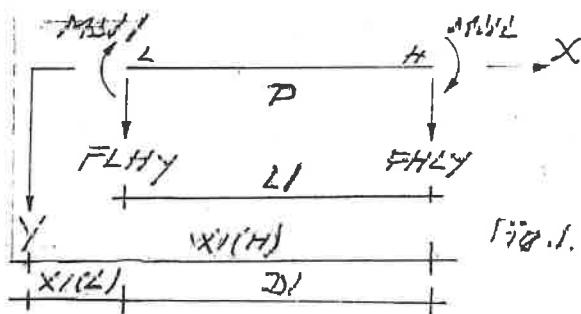


Fig. 1

Private Sub MEMBERMATS5CBEAM()

Fig 1
 Bending stiffness $EI = EI(P)$ and the member end numbers are $L = LL(P)$ and $H = HH(P)$, preceding page.
 $D1 = X1(H) - X1(L)$ and
 $L1 = \sqrt{D1^2}$. (See page 23.)
 With L on the left and H on the right is
 $D1 - X1(H) - X1(L) > 0$.

See next page for the case that L and H are exchanged, then is $D1 - X1(H) - X1(L) < 0$.

For each member P data $NL(P)$ and $NH(P)$ were put in.

$NL(P) = 0$, member end L is not a hinge.

$NL(P) = 1$, member end L is a hinge.

$NH(P) = 0$, member end H is not a hinge.

$NH(P) = 1$, member end H is a hinge.

a) Member P without hingy member ends.

If $NL(P) = 0$ And $NH(P) = 0$ Then

$$\begin{bmatrix} FLHY \\ MLH \\ FHLY \\ MHL \end{bmatrix} \begin{bmatrix} A & B & -A & B \\ B & D & -B & E \\ -A & -B & A & -B \\ B & E & -B & D \end{bmatrix} \begin{bmatrix} UVL \\ URL \\ UVH \\ URH \end{bmatrix} \begin{array}{ll} A = 12*EI/L1^3 & \\ B = 6*EI/L1^2 & \\ D = 4*EI/L1 & \\ E = 2*EI/L1 & \end{array}$$

$NL(P) = 0 \quad NH(P) = 0$

The characters A , B , D and E get their value and with subroutine

FILLINGS5CBEAM placed in matrix $S5$.

b) and c) Member P with a hingy member end at L or a hingy member end at H .

Else If $NL(P) = 1$ Or $NH(P) = 1$

$$\begin{bmatrix} A & 0 & -A & B \\ 0 & 0 & 0 & 0 \\ -A & 0 & A & -B \\ B & 0 & -B & D \end{bmatrix} \begin{bmatrix} A & B & -A & 0 \\ B & D & -B & 0 \\ -A & -B & A & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{ll} A = 3*EI/L1^3 & \\ B = 3*EI/L1^2 & \\ D = 3*EI/L1 & \end{array}$$

$NL(P) = 1 \quad NH(P) = 1$

A , B and D get their value and are placed in $S5$. All sixteen elements of $S5$ have got a value but there are rows and columns of which the values are zero.

If $NL(P) = 1$ Then

Row 2 and column 2 are filled with zeros.

Else If $NH(P) = 1$ Then

Row 4 and column 4 are filled with zeros.

d) Both member ends are hinges.

ElseIf $NL(P) = 1$ And $NH(P) = 1$ Then

In that case are $A = 0 : B = 0 : D = 0 : E = 0$ so that all elements of $S5$ become zero.

End Sub

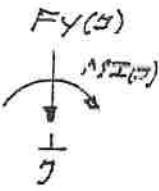
Private Sub FILLINGS5CBEAM()

All sixteen elements of $S5$ become their values with the characters A , B , D and E , after that eventual corrections are applied in subroutine

MEMBERMATS5CBEAM

End Sub

$$\begin{array}{c}
 \begin{bmatrix} \cdot \\ \cdot \\ \cdot \\ \hline \text{FF(A)} \\ \text{FF(B)} \\ \cdot \\ \cdot \end{bmatrix} \quad \begin{bmatrix} \cdot \\ \text{FY(2)} \\ \cdot \\ \cdot \end{bmatrix} \quad \begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{bmatrix} \\
 \text{FF} \qquad \text{FY} \qquad \text{MZ}
 \end{array}$$



$$\begin{array}{ll}
 \Lambda=2*I-1 & B=2*I \\
 I=2 & A=2*2-1=3 \quad B=2*2=4 \\
 I=3 & A=2*3-1=5 \quad B=2*3=6
 \end{array}$$

Fig.1.

Private Sub CBEAMMAINCALC()

'1. Composition of construction
'matrix CC with member
'matrices S5.

CONSTRMATCCCBEAM page 21

'2. Elements of force vector FF.
'2a. Joint load forces FY(I) and
'joint load moments MZ(I).

$$N=2*N9$$

For I=1 To N9

$$A=2*I-1 : B=2*I$$

$$FF(A)=FY(I) : FF(B)=MZ(I)$$

$$PP(A)=PV(I) : PP(B)=PR(I)$$

$$UU(A)=UV(I) : UU(B)=UR(I)$$

$$SS(A)=SV(I) : SS(B)=SR(I)$$

Next I

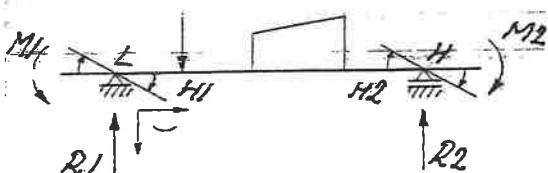
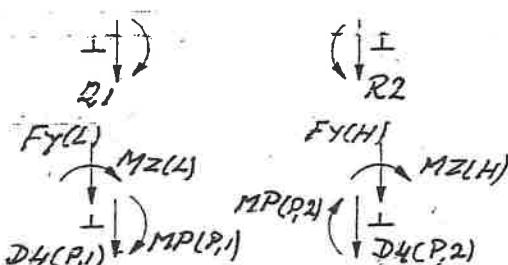


Fig.2b.

'2b. Primary forces and moments
'due to member loads perpendicular
'to the member axis.

For P=1 To P9 : L=LL(P) : H=HH(P)

$$EI=EI(P)$$

$$D1=X1(H)-X1(L)$$

$$L1=Sqr(D1^2)$$

If LE(P)=1 And RE(P)=1 Then

$$M1=0 : M2=0$$

BEAM1

ElseIf LE(P)=1 Or RE(P)=1 Then
M1=0 : M2=0 : M3=0 : M4=0

BEAM2

ElseIf LE(P)=0 And RE(P)=0 Then
BEAM3

End If

'primary moments and forces

$$M11(P)=M1 : R11(P)=R1$$

$$M22(P)=M2 : R22(P)=R2$$

PRIVATE SUB CBEAMMAINCALC()

With this subroutine the main calculation is carried out for continuous beams.
(And can also be used for simple beams on two supports.)

Construction matrix CC is formed with

1. CONSTRMATCCCBEAM in which the member stiffness matrices S5 are placed/inserted

2. Elements of force vector FF.

2a. The joint load forces FY(I) and the joint load moments MZ(I).

Fig.1.

With N9 joints and two displacements per joint, translation UV(I) and rotation UR(I), the number of equations is $N=2*N9$.

For each joint are by means of

$$A=2*I-1 : B=2*I$$

joint load force FY(I) and joint load moment MZ(I) placed in total vector FF.

Next PV(I) and PR(I) in total vector PP, UV(I) and UR(I) in UU, and SV(I) and SR(I) in SS.

2b. Primary forces and primary moments due to member loads perpendicular to the member/beam axis.

Fig.2a.

For each member P=1 To P9 the bending stiffness is set $EI=EI(P)$ and are calculated

$$D1=X1(H)-X1(L) : L1=Sqr(D1^2)$$

With the beam axes system at member end L, for each member P are calculated the reactions R1 and R2, the reaction moments M1 and/or M2, whether or not existing, and the slope deflections H1 and H2, using subroutine

BEAM1 of page 1, or

BEAM2 of page 4, or

BEAM3 of page 7.

On the joints act forces and moments as large as but opposite directed.

And then, see next page, becomes $C=D1/L1$. Not earlier because C is used in BEAM3.

With $BA(P)=L$ is indicated that the beam axes system is placed at member end L and in that case is $C=D1/L1=+1$ and can one write $R1*C$ and $R2*C$.

Fig.2b.

On the joints act the primary forces $D4(P,1)$ at L and $D4(P,2)$ at H, and the primary moments $MP(P,1)$ at L and $MP(P,2)$ at H according to assumed directions

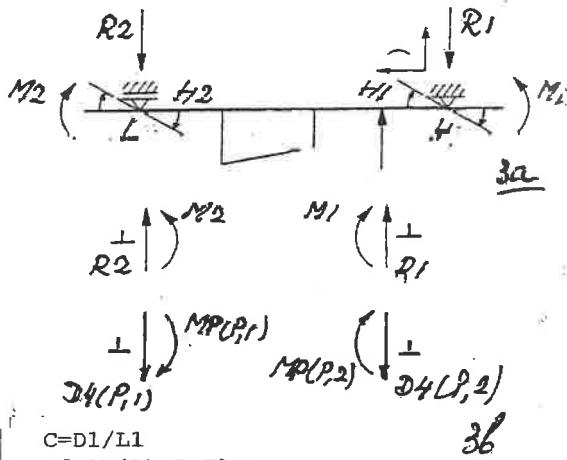
Then follow considering the assumed directions,

$$D4(P,1)=R1*C : D4(P,2)=R2*C$$

$$MP(P,1)=M1 : MP(P,2)=-M2.$$

Is one of both member ends a hinge, or are both member ends hinges, then the slope deflections H1 or/and H2 are used for the separately calculated slope deflections which are stored in

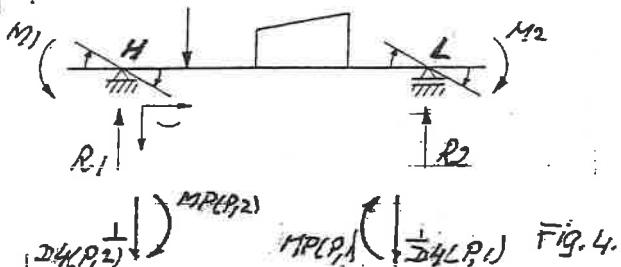
$$HE(P,1)=H1 : HE(P,2)=H2.$$



```

C=D1/L1
If BA(P)=L Then
D4(P,1)=R1*C : D4(P,2)=R2*C
MP(P,1)=M1 : MP(P,2)=-M2
HE(P,1)=H1 : HE(P,2)=H2
Else If BA(P)=H Then
D4(P,1)=-R2*C : D4(P,2)=-R1*C
MP(P,1)=-M2 : MP(P,2)=M1
HE(P,1)=H2 : HE(P,2)=H1
End If
Next P

```



'2c Alteration of force vector FF.

```

For I=1 To N9
A=2*I-1 : B=2*I
For P=1 To P9 : L=LL(P) : H=HH(P)
I I<=L Then
FF(A)=FF(A)+D4(P,1)
FF(B)=FF(B)+MP(P,1)
Else If I=H Then
FF(A)=FF(A)+D4(P,2)
FF(B)=FF(B)+MP(P,2)
End If
Next P
Next I

```

Fig.3a en 3b.

Else If BA(P)=H Then

This time the beam axes system is placed at member end H.

Then are R1 at H and R2 at L directed downward. The joint numbers are not exchanged so that also now C=D1/L1=+1 and can one write R1*C and R2*C.

Moment M1 at H also now to the right, and moment M2 at L also now to the left.

Further slope/angle H1 at H and slope/angle H2 at L also now to the right.

On the joints L and H act forces and moments as large as but opposite directed.

The direction of the primary force D4(P,1) at L is opposite directed to that of R2*C, and of the primary force D4(P,2) at H opposite to that of R1*C, so that

D4(P,1)=-R2*C : D4(P,2)=-R1*C.

And for the primary moments follow considering the directions

MP(P,1)=-M2 : MP(P,2)=M1 and for the slope deflections

HE(P,1)=H2 : HE(P,2)=H1.

Fig.4.

The load case of fig.2a but L and H are exchanged. Also now is BA(P)=H, so that

D4(P,1)=-R2*C at joint L. Is that correct?

On joint L acts R2 downward like D4(P,1).

C=D1/L1=-1 ! so D4(P,1)=R2 is correct.

D2(P,2)=-R1*C at joint H is correct as well.

C makes all go well.

Moments and slope deflections are also correct.

Note, always (P,1) at L, and (P,2) at H.

2c. Alteration of force vector FF.

Fig.5.

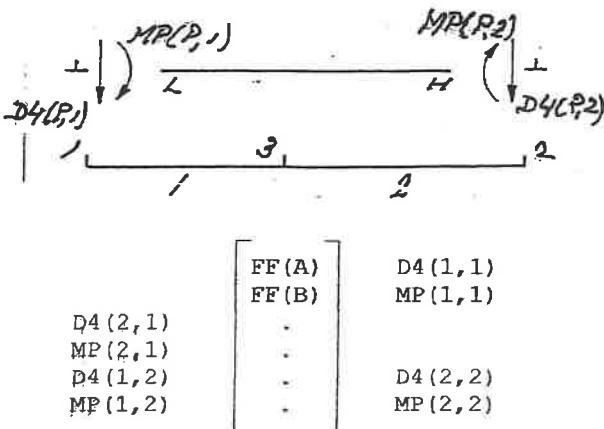
The assumed directions for the on the joints acting primary forces and moments are the same as those for the joint load forces and joint load moments. The primary forces and moments are added to the preceding values of the elements of vector FF.

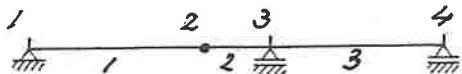
For each joint I all members P=1 To P9 are checked if the member delivers on that joint I a primary force or moment.

As shown below for these three 'unregular' numbered joints and two members.

<u>I=1</u>	<u>A=2*I-1=1</u>	<u>B=2*I=2</u>
P=1	L=1 H=3 I=L=1 I<>H	
	FF(A)=FF(A)+D4(P,1) FF(1)=FF(1)+D4(1,1)	
	FF(B)=FF(B)+MP(P,1) FF(2)=FF(2)+MP(1,1)	
P=2	L=2 H=3 I<>L I<>H	
I=2	<u>A=2*2-1=3</u>	<u>B=2*2=4</u>
P=1	L=1 H=3 I<>L I<>H	
P=2	L=2 H=3 I=L=2 I<>H	
	FF(A)=FF(A)+D4(P,1) FF(3)=FF(3)+D4(2,1)	
	FF(B)=FF(B)+MP(P,1) FF(4)=FF(4)+MP(2,1)	
I=3	<u>A=2*3-1=5</u>	<u>B=2*3=6</u>
P=1	L=1 H=3 I<>L I=H=3	
	FF(A)=FF(A)+D4(P,2) FF(5)=FF(5)+D4(1,2)	
	FF(B)=FF(B)+MP(P,2) FF(6)=FF(6)+MP(1,2)	
P=2	L=2 H=3 I<>L I=H=3	
	FF(A)=FF(A)+D4(P,2) FF(5)=FF(5)+D4(2,2)	
	FF(B)=FF(B)+MP(P,2) FF(6)=FF(6)+MP(2,2)	

Fig.5.





$$\begin{array}{l}
 1 \left[\begin{array}{ccccccccc} \dots & \dots \end{array} \right] \left[\begin{array}{c} \cdot \\ \cdot \end{array} \right] = \left[\begin{array}{c} FF(1) \\ \cdot \\ FF(K) \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ FF(N) \end{array} \right] \\
 2 \left[\begin{array}{ccccccccc} \dots & \dots \end{array} \right] \left[\begin{array}{c} \cdot \\ \cdot \end{array} \right] = \left[\begin{array}{c} FF(1) \\ \cdot \\ FF(K) \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ FF(N) \end{array} \right] \\
 3 \left[\begin{array}{ccccccccc} \dots & \dots \end{array} \right] \left[\begin{array}{c} \cdot \\ \cdot \end{array} \right] = \left[\begin{array}{c} FF(1) \\ \cdot \\ FF(K) \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ FF(N) \end{array} \right] \\
 4 \left[\begin{array}{ccccccccc} \dots & \dots \end{array} \right] \left[\begin{array}{c} \cdot \\ \cdot \end{array} \right] = \left[\begin{array}{c} FF(1) \\ \cdot \\ FF(K) \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ FF(N) \end{array} \right] \\
 5 \left[\begin{array}{ccccccccc} \dots & \dots \end{array} \right] \left[\begin{array}{c} \cdot \\ \cdot \end{array} \right] = \left[\begin{array}{c} FF(1) \\ \cdot \\ FF(K) \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ FF(N) \end{array} \right] \\
 6 \left[\begin{array}{ccccccccc} \dots & \dots \end{array} \right] \left[\begin{array}{c} \cdot \\ \cdot \end{array} \right] = \left[\begin{array}{c} FF(1) \\ \cdot \\ FF(K) \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ FF(N) \end{array} \right] \\
 7 \left[\begin{array}{ccccccccc} \dots & \dots \end{array} \right] \left[\begin{array}{c} \cdot \\ \cdot \end{array} \right] = \left[\begin{array}{c} FF(1) \\ \cdot \\ FF(K) \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ FF(N) \end{array} \right] \\
 8 \left[\begin{array}{ccccccccc} \dots & \dots \end{array} \right] \left[\begin{array}{c} \cdot \\ \cdot \end{array} \right] = \left[\begin{array}{c} FF(1) \\ \cdot \\ FF(K) \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ FF(N) \end{array} \right] \\
 \end{array}$$

Fig.6.

'3 Alteration of force vector FF and construction matrix CC.
'3a Of FF in case of prescribed displacements $\neq 0$.

```

For I=1 To N
If UU(I) <> 0 Then
  For K=1 To N
    FF(K)=FF(K)-CC(K,I)*UU(I)
  Next K
End If
Next I

```

$$\begin{array}{l}
 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\
 \left[\begin{array}{cccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cdot & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cdot & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \cdot & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right] \left[\begin{array}{c} UU1 \\ \cdot \end{array} \right] = \left[\begin{array}{c} UU1 \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ \cdot \\ \cdot \\ \cdot \end{array} \right] \\
 \left[\begin{array}{cccccccc} CC & & & & & & & & \end{array} \right] \left[\begin{array}{c} UU \\ \cdot \end{array} \right] = \left[\begin{array}{c} FF \\ \cdot \end{array} \right]
 \end{array}$$

'3b. Of FF and CC in case of prescribed displacements.

```

For I=1 To N
If PP(I)=1 Then
  For J=1 To N
    CC(I,J)=0 : CC(J,I)=0
  Next J
  CC(I,I)=1 : FF(I)=UU(I)
End If
Next I

```

'3c. Of FF and CC if the joint is a hinge.

```

For I=1 To N
If CC(I,I)=0 Then CC(I,I)=1
  FF(I)=0
Next I

```

'3d. Of CC in case of springy/elastic supports.

```

For I=1 To N
If SS(I)>0 Then
  CC(I,I)=CC(I,I)+SS(I)
End If
Next I

```

3. Alteration of force vector FF and construction matrix CC.

3a. Of FF in case of prescribed displacements $\neq 0$.

Fig.6.
Suppose that for joint 3 displacement $UV(3)$ is prescribed and unequal to zero.
With $A=2*I-1=2*3-1$ is that $UU(5)$ in total vector UU .
For $I=1$ To N is checked if there is a displacement $UU(I) \neq 0$. If so, then all elements of total vector FF must be lessened with $CC(K,I)*UU(I)$.

If $UU(I)=UU(5) \neq 0$ with $CC(K,5)*UU(5)$.

```

For K=1 To N
  FF(K)=FF(K)-CC(K,I)*UU(I)
  FF(1)=FF(1)-CC(1,5)*UU(5)
  FF(2)=FF(2)-CC(2,5)*UU(5)
  FF(3)=FF(3)-CC(3,5)*UU(5)
  FF(4)=FF(4)-CC(4,5)*UU(5) and so on.

```

3b. Of FF and CC in case of prescribed displacements. (equal to zero and unequal to zero as well)

Fig.7.
Is for a joint $I=1$ To N the vertical displacement $UV(I)$ prescribed, then has been put in $PP(I)=1$.

Is for a joint $I=1$ To N the joint rotation prescribed then has been put in $PR(I)=1$.
 $PP(I)$ is with $A=2*I-1$, and $PR(I)$ is with $A=2*I$ placed in total vector PP .
Here are prescribed $UV(1)$, $UV(3)$ and $UV(4)$, or, $UU(1)$, $UU(5)$ and $UU(7)$.
For $I=1$ To N ($=2*N$) is checked if a displacement is prescribed, thus if $PP(I)=1$.
Is $PP(I)=1$ then is $UU(1)$, is $UV(1)$, prescribed and the first row and first column of CC filled with zeros with $CC(I,J)=0$ and $CC(J,I)=0$.

```

I=1
  CC(I,J)=CC(1,1)=0 and CC(J,I)=CC(1,1)=0
  J=2
    CC(1,2)=0 and CC(2,1)=0
  J=3
    CC(1,3)=0 and CC(3,1)=0
and so on.

```

After the diagonal element is set zero
 $CC(1,1)=1$ and gets $FF(1)$ the value $UU(1)$.
Similar for $UU(5)$ and $UU(7)$.

3c. Alteration of FF and CC if the joint is a hinge.

The stiffness matrices $S5$ of member 1 and 2 (see page 22) deliver the underlined zeros in matrix CC so that $CC(4,4)=0$. For $I=1$ To is checked if $CC(I,I)=0$. If so then become $CC(I,I)=1$ and $FF(I)=0$.
So here $CC(4,4)=1$ and $FF(4)=0$. After solution of the equations one will find $UU(4)=0$, the not existing rotation $UR(2)=0$.

3d. Of CC in case of springy supports.

If $SS(I)>0$ then a spring constant for a translation or rotation spring has been put in, which value is added to the concerning element on the main diagonal.


```

ElseIf NL(P)=1 Then
If D1>0 Then
HE(P,1)=HE(P,1)+H7-0.5*UR(H)
If D1<0 Then
HE(P,1)=HE(P,1)-H7-0.5*UR(H)

```

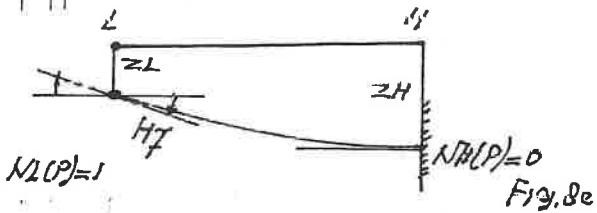


Fig.8e

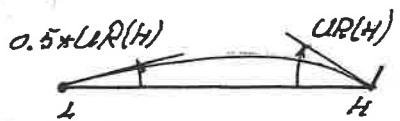


Fig.8f

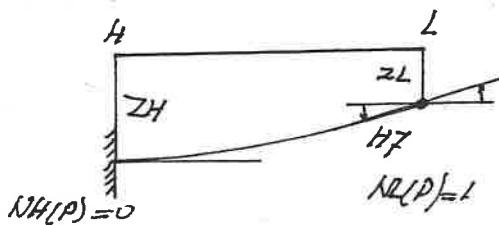


Fig.8g

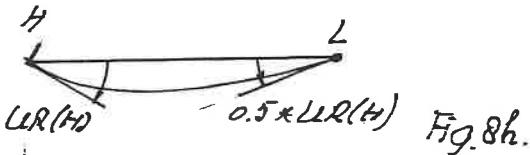


Fig.8h

```

ElseIf NH(P)=1 Then
If D1>0 Then
HE(P,2)=HE(P,2)+H7-0.5*UR(L)
If D1<0 Then
HE(P,2)=HE(P,2)-H7-0.5*UR(L)
End If
Next P

```

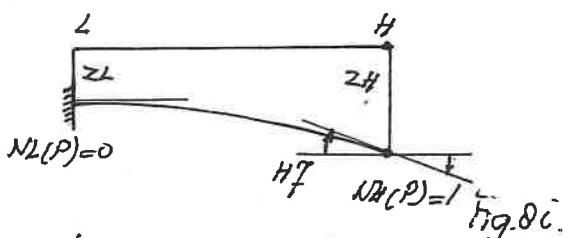


Fig.8i

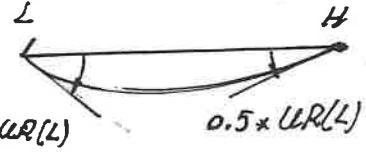


Fig.8j

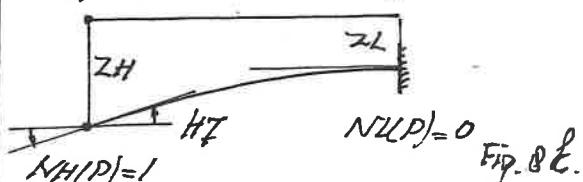


Fig.8k

Fig.8l

If both beam ends are not hinges then there are two more possibilities left.

```
ElseIf NL(P)=1 Then
```

Member end L of the beam is a hinge, and member end H is connected with a real joint. One could have written also ElseIf NL(P)=1 and NH(P)=0 Then but not necessary after If NL(P)=1 And NH(P)=1 Then.

Fig.8e and 8f.

```
If D1>0 Then HE(P,1)=HE(P,1)+H7-0.5*UR(H)
```

The effect of the displacements ZL and ZH on the slope at L to be calculated separately can be seen as the sum of two cases.

Fig.8e.

Before the displacements of member end L and joint H, is member end H, joint H is held, clamped. After the displacements take place the figure drawn arises with slope H7 at L directed to the right. The magnitude of H7 is, see page with the formulas,
 $H7=1.5*(ZH-ZL)/L1$ already written on the preceding page.

Fig.8f.

Without the displacements ZL and ZH, the beam is bent by rotation of joint H, assumption to the right. The beam bends like drawn and at member end L arises a slope which magnitude is half of that rotation UR(H), $0.5*UR(H)$ and directed to the left as the figure shows.

Taking into account the assumption for $HE(P,1)$ to the right follows, (P,1) is (L,H),
 $HE(P,1)=HE(P,1)+H7-0.5*UR(H)$.

Fig.8g and 8h.

```
If D1<0 Then HE(P,1)=HE(P,1)-H7-0.5*UR(H)
```

Member end L is also now a hinge but L and H are exchanged. Due to the displacements ZL and ZH arises at L a slope H7 directed to the left of which the magnitude is $1.5*(ZH-ZL)/L1$ like before. Rotation UR(H) causes also now a slope at L $0.5*UR(H)$ to the left. With $HE(P,1)$ to the right follows the equation for $D1<0$ just written.

```
ElseIf NH(P)=1 Then
```

Now member end H is a hinge and member end L is rigidly connected with real joint L.

Fig.i and j.

```
If D1>0 Then HE(P,2)=HE(P,2)+H7-0.5*UR(L)
```

Due to ZL and ZH arises a slope H7 to the right and due to the rotation UR(L) of joint L arises a slope of $0.5*UR(L)$ at member end H.

Fig.k and l.

```
If D1<0 Then HE(P,2)=HE(P,2)-H7-0.5*UR(L)
```

The same procedure, now slope H7 is directed to the left.

(Slope H7 arises due to the assumed directions of ZL and ZH downward, and! the assumption that ZH is larger than ZL.)

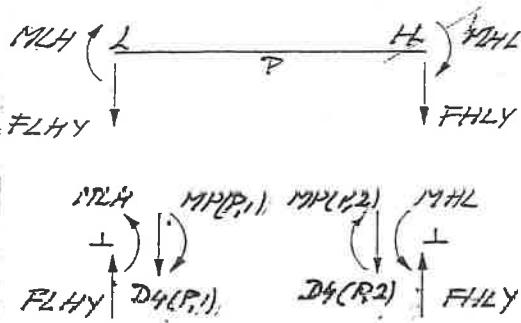


Fig.10b.

'6b. Due to displacements and member loads perpendicular to the member axis.

For $P=1$ To $P9$: $L=LL(P)$: $H=HH(P)$

If $I=L$ Then

$KV(I)=KV(I)-D4(P,1)$

$KM(I)=KM(I)-MP(P,1)$

Else If $I=H$ Then

$KV(I)=KV(I)-D4(P,2)$

$KM(I)=KM(I)-MP(P,2)$

End If

Next P

Next I

6b. Due to displacements and member loads perpendicular to the member axis.

Fig.10b.

The on the member ends acting member end forces $FLHY$ and $FHLH$ are assumed to be directed downward, on the joints act forces as large as but opposite directed, thus upward. Only therefore joint force $KV(I)$ was assumed upward.

The on the member ends acting member end moments MLH and MHL are assumed to the right, on the joints act moments as large as but directed to the left. Only therefore the direction of joint moment $KM(I)$ was assumed to the left.

The on the joints acting primary forces $D4(P,1)$ and $D4(P,2)$ are assumed to be directed downward, and the on the joints acting primary moments are assumed to be directed to the right.

For each joint $I=1$ To $N9$ (see preceding page) is checked at all members $P=1$ To $P9$ if member P delivers on joint $I=L$ a primary force $D4(P,1)$ and/or a primary moment $MP(P,1)$. Taking into account the assumed directions then follows

If $I=L$ Then

$KV(I)=KV(I)-D4(P,1)$

$KM(I)=KM(I)-MP(P,1)$

Or member P delivers on joint $I=H$ a primary force $D4(P,2)$ and/or a primary moment $MP(P,2)$.

Else If $I=H$ Then

$KV(I)=KV(I)-D4(P,2)$

$KM(I)=KM(I)-MP(P,2)$

End If

And the next member with Next P and after member $P=P9$ follows the next joint with Next I.

7. Calculation of the reactions.

Fig.11.

The vertical reaction is mostly directed upward, only therefore is assumed that reaction $RV(I)$ is directed upward. And the direction of the moment reaction is, well, assumed to the left, (a choice) because $KM(I)$ and $RM(I)$ have the same direction, like also $KV(I)$ and $RV(I)$ have the same direction.

Is $SV(I)>0$ then there is a vertical translation spring and arises with an assumed downward displacement $UV(I)$ an upward directed spring reaction $VKV=SV(I)*UV(I)$. Then is reaction

$RV(I)=SV(I)*UV(I)$.

If there is no hinge, $SV(I)=0$ has been put in, then follows $RV(I)$ with Σ vert. joint $I=0$.

$RV(I)+KV(I)=FY(I)=0 \Rightarrow RV(I)=-KV(I)+FY(I)$

If $SR(I)>0$ then there is a rotation spring and arises, with an assumed direction $UR(I)$ to the right, a spring reaction moment $VKM=SR(I)*UR(I)$ to the left. Then the reaction moment is

$RM(I)=SR(I)*UR(I)$.

If there is no rotation spring, then follows

$RM(I) \text{ with } \Sigma \text{ mom. joint } I=0$.

$RM(I)+KM(I)-MZ(I)=0 \Rightarrow RM(I)=-KM(I)+MZ(I)$

End of the 'seven main steps'.

End Sub.

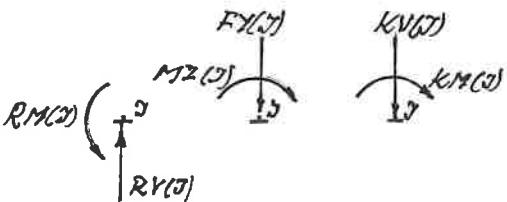


Fig.11.

'7. Calculation of the reactions.

For $I=1$ To $N9$

If $SV(I)>0$ Then

$RV(I)=SV(I)*UV(I)$

Else

$RV(I)=-KV(I)+FY(I)$

End If

If $SR(I)>0$ Then

$RM(I)=SR(I)*UR(I)$

Else

$RM(I)=-KM(I)+MZ(I)$

End If

Next I

End Sub

4.11. Private Sub CBDRAWT5()

```

Private Sub CBDRAWT5()
T5MAXX=0
'
For P=1 To P9: L=LL(P) : H=HH(P)
D1=X1(H)-X1(L)
L1=Sqr(D1^2) : L11(P)=L1
C=D1/L1
'
If BA(P)=L Then
M1=-MF(P,1) : M2=MF(P,2)
ElseIf BA(P)=H Then
M1=-MF(P,2) : M2=MF(P,1)
End If
'
T5MAXX=  

If Abs(T5MAXX)<Abs(TMAX) Then
T5MAXX=TMAX : XTT=XT : PT=P
End If
Next P
If Format(T5MAXX,"0")=0 Then
T5MAXX=1
B=450/Abs(T5MAXX)
'
For P=1 To P9 : L=LL(P) : H=HH(P)
D1=X1(H)-X1(L)
L1=Sqr(D1^2) : L11(P)=L1
C=D1/L1
'
D11=X11(H)-X11(L)
TWL1=Sqr(D11^2)
'
If BA(P)=L Then
M1=-MF(P,1) : M2=MF(P,2)
'
XA=X11(L) : YA=Y11(L)
X=0 : T5M5XX  

T5V=T5*C  

XB=X11(L)
YB=Y11(L)+T5V*B
LINE(XAYAXBYB) 'PRP=0 or PRP=1
XA=XB : YA=YB
'
For X=0.01 To L1+0.01 Step 0.01
XH=X*C
T5M5XX
T5V=T5*C
XB=X11(L)+XH*(TWL1/L1)
YB=Y11(L)+T5V*B
LINE(XAYAXBYB) page 42
If X>=L1 Then
XA=XB : YA=YB
XB=X11(L)+L1*C*(TWL1/L1)
YB=Y11(L)
LINE(XAYAXBYB)
Exit For 'to avoid 'problems'
End If
'
XA=XB : YA=YB
Next X

```

If X>=L1 Then
for the last line to draw from A to B, follows for point B on the zero line, $XB=X11(L)+L1*C*(TWL1/L1)$, so having C a positive value XB gets the same value as X11(H).
(Why using C? When dealing with plane frames C=D1/L1 and also S=D2/L1 will be used to determine point B, and A.)

With this subroutine the transverse force diagrams for all beams of a continuous beam are drawn. See page for drawing the diagram for a simple beam.

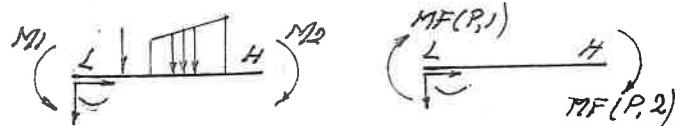
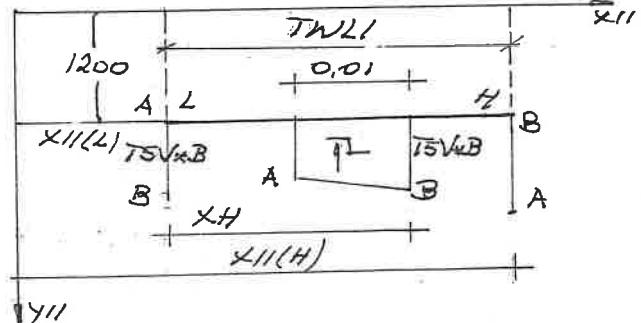
First the largest appearing transverse force T5MAXX will be calculated, start value T5MAXX=0, using subroutine T5MAX, see next page. Then M1 and M2 are asked and they are the calculated beam end moments MF(P,1) at beam end L, and MF(P,2) at beam end H. Coordinates X1() are used given in meters, the displacement is found in /EI.

If BA(P)=L Then
M1=-MF(P,1) : M2=MF(P,2) which is correct for both cases, L on the left or on the right of the beam.

ElseIf BA(P)=H Then See fig.
M1=-MF(P,2) : M2=MF(P,1) for H on the right as well on the left of the beam.
After the largest is found then becomes B=450/Abs(T5MAXX), the largest transverse force drawn will have a length of 450 twips.
A twip is $(2,54/1440)=0,00176$ cm. 567 tw = 1 cm
But, If Format(T5MAXX,"0")=0 Then T5MAXX=1.

Next the transverse force diagram for each beam P=1 To P9 is drawn.
C=D1/L1 which can be positive or negative.
Now the already determinated coordinates X11() are used. The length of a beam in twips follows with
D11=X11(H)-X11(L), then
TWL1=Sqr(D11^2). (also is C=D11/TWL1)

If BA(P)=L Then



First T5 becomes T5V, after calculation of T5 for X=0 becomes T5V=T5*C. In this case is C positive, $X1(H)-X1(L)>0$, so T5V has a positive value, it is plotted below the zero line, $YB=1500-T5V*B$. After that follows

For X=0 To L1+0.01 Step 0.01
First $XH=X*C$, in meters!, with a positive C measured from $X11(L)$ to the right, then subroutine T5M5XX and then each time after that $T5V=T5*C$, and then $XB=X11(L)+XH*(TWL1/L1)$.

```

ElseIf BA(P)=H Then
M1=-MF(P,2) : M2=MF(P,1)
*
XA=X11(H) : YA=Y11(H)      'YA=1200
X=0 : T5M5XX
T5V=T5*C
XB=X11(H)
YB=Y11(H)-T5V*B
LINEXAYAXBYB
XA=XB : YA=YB

For X=0.01 To L1+0.01 Step 0.01
XH=X*C
T5M5XX
T5V=T5*C

XB=X11(H)-XH*(TWL1/L1)
YB=Y11(H)-T5V*B
LINEXAYAXBYB

If X>=L1 Then
XA=XB : YA=YB
XB=X11(H)-L1*C*(TWL1/L1)
YB=Y11(H)
LINEXAYAXBYB
Exit For
End If

XA=XB : YA=YB
Next X
End If
Next P

End Sub

```

With subroutine T5MAX the largest transverse force TMAX for a beam P is calculated using subroutine T5M5XX for each X, by comparing the absolute values,
 If $\text{Abs}(\text{TMAX}) < \text{Abs}(\text{T5})$ Then $\text{TMAX} = \text{T5}$.
 And distance X is stored with $\text{XT} = \text{X}$.

```
Private Sub T5MAX()
TMAX=0
For X=0 To L1+0.01 Step 0.01
T5M5XX 'see page 9
If Abs(TMAX)<Abs(T5) Then
TMAX=T5 : XT=X
End If
Next X
End Sub
```

After that, see the preceding page, the largest of all, $\text{Abs}(\text{T5MAXX})$ is compared with the largest $\text{Abs}(\text{TMAX})$ of the current beam. If so then the distance XT for that beam is stored with $\text{XTT}=\text{XT}$, and the current beam with $\text{PT}=\text{P}$.

```
  If Abs(T5MAXX) < Abs(TMAX) Then
    T5MAXX=TMAX : XTT=XT : PT=P
  End If
```

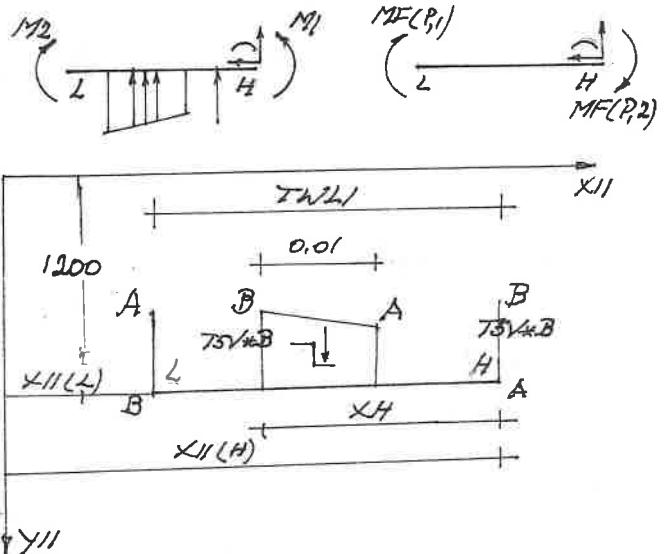
And after Next P, the last beam, follows $B=450/\text{Abs}(TMAXX)$. Every transverse force is multiplied by B. The largest 'distance' to be plotted is 450 twips, that is $(450/1440)*2.54 = 0.8$ cm.

That was $BA(P)=L$ with $X_1(H) > X_1(L)$, the case with $X_1(H) < X_1(L)$ is here omitted.

ElseIf BA(P)=H Then

The bam axis system at the beam end with the highest member end number H, also two possibilities when exchanging L and H. For both cases is $C=D1/L1$, already calculated, and are, see the figures below,
 $M1=-MF(P,2) : M2=MF(P,1)$.

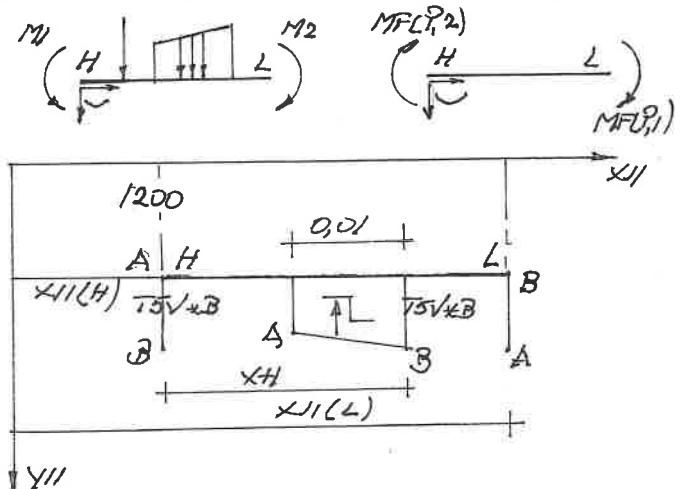
Fig.



$C=D1/L1$ is positive, $X1(H)-X1(L) > 0$. Drawing starts now at H on the right with $XA=X11(H)$. The assumed $T5$, becoming $T5V=T5*C$ is plotted above the zero line, C is pos. thus $YB=1500-T5V*B$, a minus sign to get point B. Then for each X is $XH=X*C$, XH is pos., to get point B is $XB=X11(H)-XH*(TWL1/L1)$, with the minus sign from H on the right to the left, correct.

And the last point B for $X \geq L1$ becomes $XB = X11(H) - L1 * C^* (TWL1/L1)$, with $C^* = +1$ that is from H over $L1$ to the left.

Fig.



Now H on the left, L on the right, C is negative. The negative C and the minus signs in the formulas gives the correct values, drawing lines like on the preceding page.

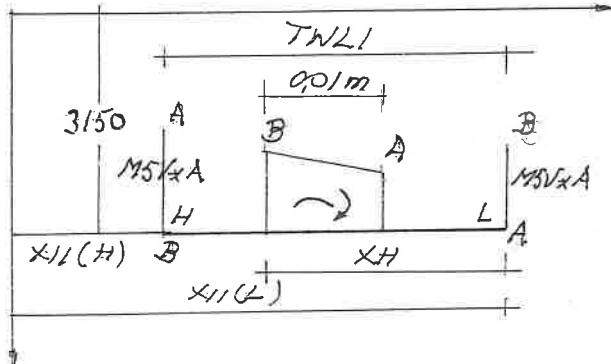
```

Private Sub CBDRAWM5()
M5MAXX=0
'
For P=1 To P9: L=LL(P) : H=HH(P)
D1=X1(H)-X1(L)
L1=Sqr(D1^2) : L11(P)=L1
C=D1/L1
'
If BA(P)=L Then
M1=-MF(P,1) : M2=MF(P,2)
ElseIf BA(P)=H Then
M1=-MF(P,2) : M2=MF(P,1)
End If
'
M5MAX
If Abs(M5MAXX) < Abs(MMAX) Then
M5MAXX=MMAX : XT=X : PT=P
End If
Next P
If Format(M5MAXX,"0")=0 Then
M5MAXX=1
A=450/Abs(M5MAXX)
'
For P=1 To P9 : L=LL(P) : H=HH(P)
D1=X1(H)-X1(L)
L1=Sqr(D1^2) : L11(P)=L1
C=D1/L1
'
D11=X11(H)-X11(L)
TWL1=Sqr(D11^2)
'
If BA(P)=L Then
M1=-MF(P,1) : M2=MF(P,2)
'
XA=X11(L) : YA=Y11(L)
X=0 : T5M5XX
M5V=M5*C
XB=X11(L)
YB=Y11(L)+M5V*A
LINE(XAYAXBYB)
XA=XB : YA=YB
'
For X=0.01 To L1+0.01 Step 0.01
XH=X*C
T5M5XX
M5V=M5*C
XB=X11(L)+XH*(TWL1/L1)
YB=Y11(L)+M5V*A
LINE(XAYAXBYB)
If X>=L1 Then
XA=XB : YA=YB
XB=X11(L)+L1*C*(TWL1/L1)
YB=Y11(L)
LINE(XAYAXBYB)
Exit For 'to avoid 'problems'
End If
XA=XB : YA=YB
Next X
'
ElseIf BA(P)=H Then
M1=-MF(P,2) : M2=MF(P,1)
'
XA=X11(H) : YA=Y11(H)
X=0 : T5M5XX
M5V=M5*C
XB=X11(H)
YB=Y11(H)-M5V*A
LINE(XAYAXBYB)
XA=XB : YA=YB

```

4.12. Private Sub CBDRAWM5()

As done for the simple beam, page 30, drawing the bending moment diagram is similar to that of the transverse diagram. The figure below shows the second case for $BA(P)=L$, omitted on page . T_5 becomes M_5 , 1200 becomes 3150, and B becomes A , T_5V*B becomes M_5V*A , etc.



For $X=0$ To $L1+0.01$ Step 0.01

$XH=X*C$
 $T5M5XX$
 $M5V=M5*C$

$XB=X11(H)-XH*(TWL1/L1)$
 $YB=Y11(H)-M5V*A$
 $LINE(XAYAXBYB)$

If $X>=L1$ Then
 $XA=XB$: $YA=YB$
 $XB=X11(H)-L1*C*(TWL1/L1)$
 $YB=Y11(H)$
 $LINE(XAYAXBYB)$
Exit For
End If

$XA=XB$: $YA=YB$
Next X
End If
Next P

End Sub

With subroutine $MMAXM5$, see page 14, NM values for maximum moments and zero points $MMAX(P,I)$ are calculated. The largest for a beam is $MMAX$ which will be compared with the largest of all $M5MAXX$.

```

Private Sub M5MAX()
'calculation of the largest M5
MMAX=0
MMAXM5
For I=1 To NM
If Abs(MMAXX(P,I))>Abs(MMAX) Then
MMAX=MMAXX(P,I) : X=LM(P,I)
End If
Next I
End Sub

```

```

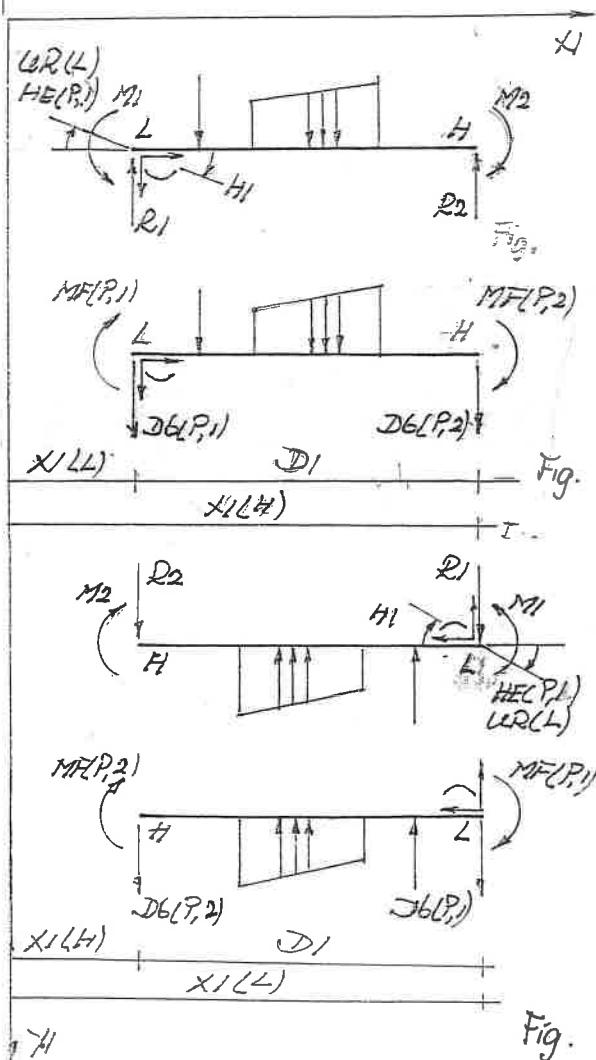
Private Sub CBDRAWELCURVE()
Z8MAXX=0

For P=1 To P9 : L=LL(P) : H=HH(P)
EI=EII(P) : D1=X1(H)-X1(L)
L1=Sqr(D1^2) : L11(P)=L1 : C=D1/L1

If BA(P)=L Then
If NL(P)=1 Then H1=HE(P,1)
If NL(P)=0 Then H1=UR(L)
R2=-D6(P,2)*C : M2=MF(P,2)
STZ8=UV(L)*C      'see page
ElseIf BA(P)=H Then
If NH(P)=1 Then H1=HE(P,2)
If NH(P)=0 Then H1=UR(H)
R2=D6(P,1)*C : M2=MF(P,1)
STZ8=-UV(H)*C    'expl. page
End If
'
ZMAXZ8           'page 18
Z2MAXX(P)=ZMAXX(P,NZ)
XZ(P)=LZ(P,NZ)    'see page

ZMAX=Abs(ZMAXX(P,NZ))
XT=LZ(P,NZ)
If ZMAX>Z8MAXX Then
Z8MAXX=ZMAX : XTT=XT : PT=P
End If
Next P

```



4.13. Private Sub CBFRAWELCURVE()

The largest displacement of all beams will be calculated to determine the scale of the curve to be printed. Before Z8MAXX=0. For each beam P the maximum displacement will be calculated with subroutine ZMAXZ8 page 18, using subroutine H8Z8XX of page 15.

If BA(P)=L Then

The beam axis system is placed at beam end L.

The first possibility with L at the left, $X1(L)$ is smaller than $X1(H)$, then $D1=X1(H)-X1(L)$ is positive, so is $C=D1/L1$.

To calculate displacements Z8 subroutine H8Z8XX is used, then are needed slope $H1$ at L, and $R2$ and $M2$ at the other end of the beam H.

The beam end forces are $D6(P,1)$ and $D6(P,2)$, both assumed to be directed downward, and the beam end moments are $MF(P,1)$ and $MF(P,2)$.

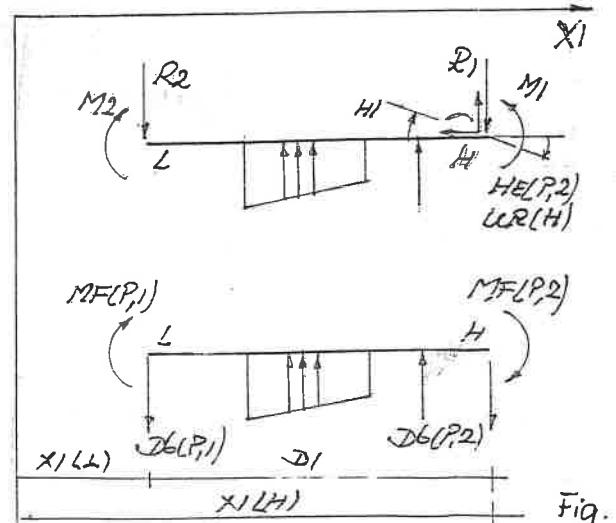
If $NL(P)=1$ then beam end L is a hinge and the separately calculated angle is $HE(P,1)$ which has the same assumed direction as angle $H1$, thus $H1=HE(P,1)$.

If $NL(P)=0$ then beam end L is considered to be a real joint, the calculated joint rotation is $UR(L)$ assumed to the right as well, and thus $H1=UR(L)$.

The assumed direction of $D6(P,2)$ is opposite to that of $R2$, therefore $R2=-D6(P,2)$. And with C follows $R2=-D6(P,2)*C$, that is the same because C is positive.

$M2$ and $MF(P,2)$ have same assumed directions, so $M2=MF(P,2)$.

L and H are exchanged. Now $D1=X1(H)-X1(L)$ is negative. For $H1$ and $M2$ the same results. Also $R2=-D6(P,2)*C$, C is negative, then R2 gets an assumed positive value, that is correct because the figure shows that R2 and $D6(P,2)$ have the same direction.



If BA(P)=H Then

Fig.

One of both possibilities for. The same use of arguments leads to the printed results after BA(P)=H Then.

```

If Format(Z8MAXX, "0")=0 Then _
Z8MAXX=1
A=450/Z8MAXX

For I=1 To N9
Y11(I)=Y11(I)+UV(I)*A
Next I

'drawing the elastic curve
For P=1 To P9 : L=LL(P) : H=HH(P)
EI=EII(P)
D1=X1(H)-X1(L)
L1=Sqr(D1^2) : L11(P)=L1
C=D1/L1
D11=X11(H)-X11(L)
TWL1=Sqr(D11^2)

If BA(P)=L Then
If NL(P)=1 Then H1=HE(P,1)
If NL(P)=0 Then H1=UR(L)
R2=-D6(P,2)*C : M2=MF(P,2)
End If
If BA(P)=H Then
If NH(P)=1 Then H1=HE(P,2)
If NH(P)=0 Then H1=UR(H)
R2=D6(P,1)*C : M2=MF(P,1)
End If

If BA(P)=L Then XA=X11(L) : _
YA=Y11(L)
If BA(P)=H Then XA=X11(H) : _
YA=Y11(H)

A=450/Z8MAXX 'see rem. below
For X=0.01 To L1+0.01 Step 0.01
XH=X*C

```

STZ8=0
H8Z8XX
Z8V=Z8*C

page 15

```

If BA(P)=L Then
XB=X11(L)+XH*(TWL1/L1)
YB=Y11(L)+Z8V*A

ElseIf BA(P)=H Then
XB=X11(H)-XH*(TWL1/L1)
YB=Y11(H)-Z8V*A
End If

LINE(XAYAXBYB) 'PRP=0 or PRP=1
XA=XB : YA=YB
Next X

Next P
End Sub

```

A=450/Z8MAXX, before Z8MAXX was made Z8MAXX=1 in case it might be almost zero. This was also done with TMAXX and M5MAXX. But will/can one of the three have a value like 34822490087E-15? Anyhow, just Format(...,"0") to round to exact zero to avoid 'problems'.

Drawing the elastic curve.

Before drawing the curve joint displacements UV(I) are prepared for the curve to be printed on the form with $Y11(I)=Y11(I)+UV(I)*A$. (Or else, next page.) These new coordinates of the joints are the start and end values of the curve for the beams For P=1 To P9.

Fig.

Again $C=D1/L1$ is used. And with the form coordinates X11() the length TWL1 in twips of each beam is calculated.

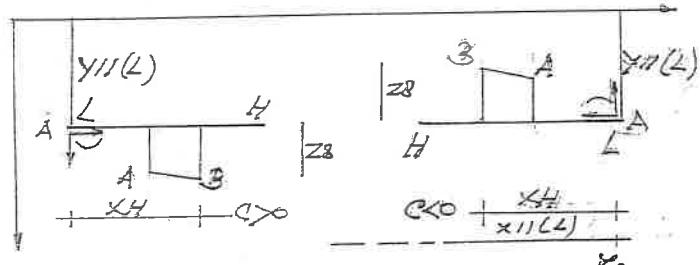
Again H1, R2 and M2 are depending on the place of the beam axis system and determined like on the preceding page.

And the starting point A to draw the curve depends on BA(P), not necessary but separately written

If BA(P)=L Then $XA=X11(L)$: $YA=Y11(L)$ and
If BA(P)=H Then $XA=X11(H)$: $YA=Y11(H)$.

$A=450/Z8MAXX$ one more time... to be sure... A could have gotten another value 'in between'...

For BA(P)=L and BA(P)=H the distance $XH=X*C$, X itself has a positive value. After calculation of Z8 with subroutine H8Z8XX, but first STZ8=0, becomes $Z8V=Z8*C$.



If BA(P)=L Then

Fig.
 $XB=X11(L)+XH*(TWL1/L1)$
 $YB=Y11(L)+Z8V*A$
 $C>0$, XH and Z8V are positive, then $XH*(TWL1/L1)$ is added to $X11(L)$, and $Z8V*A$ is added to $Y11(L)$.
 $C<0$, XH and Z8V are negative, then $XH*(TWL1/L1)$ is subtracted from $X11(L)$, and Z8V subtracted from $Y11(L)$.



ElseIf BA(P)=H Then

Fig.
 $XB=X11(H)-XH*(TWL1/L1)$
 $YB=Y11(H)-Z8V*A$
 $C>0$, XH and Z8V are positive, then $XH*(TWL1/L1)$ is subtracted from $X11(H)$, and $Z8V*A$ subtracted from $Y11(H)$.
 $C<0$, XH and Z8V are negative, then $XH*(TWL1/L1)$ is added to $X11(H)$, and $Z8V*A$ added to $Y11(H)$. (minus*minus=plus)

..... (of page 33)

```
If BA(P)=L Then
  If NL(P)=1 Then H1=HE(P,1)
  If NL(P)=0 Then H1=UR(L)
  R2=-D6(P,2)*C : M2=MF(P,2)
  STZ8=UV(L)*C
ElseIf BA(P)=H Then
  If NL(P)=1 Then H1=HE(P,2)
  If NL(P)=0 Then H1=UR(H)
  R2=D6(P,1)*C : M2=MF(P,1)
  STZ8=-UV(H)*C
End If
'
ZMAXZ8          'page 18
ZZMAXX(P)=ZMAXX(P,NZ)
XZ(P)=LZ(P,NZ)  'see page
```

```
ZMAX=Abs(ZMAXX(P,NZ))
XT=LZ(P,NZ)
If ZMAX>=Z8MAXX Then
  Z8MAXX=ZMAX : XTT=XT : PT=P
End If
Next P
*****
```

..... end of ZMAXZ8, page
ZMAX=0

```
For I=1 To NZ
  If Abs(ZMAXX(P,I))>Abs(ZMAX) Then
    ZMAX=ZMAXX(P,I) : X=LZ(P,I)
  End If
  Next I
  NZ=NZ+1
  ZMAXX(P,NZ)=ZMAX : LZ(P,NZ)=X
  NZZ(P)=NZ
End Sub
```

For each beam P the NMM(P) bending moments when the transverse force is about zero and when the moment itself is about zero,

```
.....  
NM=NM+1 : NMM(P)=NM  
MMAXX(P,NM)=M5 : LM(P,NM)=X  
.....
```

When clicking on caption M5MAXZERO these values are printed for each beam P.

```
Private Sub LM5MAXZERO_Click()
  CurrentY=CY : CXX=4500
  For P=1 To P9
    For I=1 To NMM(P)
      CurrentX=525+CXX : Print " M5=";
      CX=2100+CXX
      T1=Format(MMAXX(P,I),"0.00") & _
      " kNm"
      TW=TextWidth(T1)
      CurrentX=CX-TW : Print T1 &
      " X= " & Format(LM(P,I),"0.00")
      & " m" & " P= " & P
    Next I : Print
  Next P
  CY=CurrentY
End Sub
```

About STZ8.

Calculation of the largest maximum displacement Z8MAXX.

To calculate the maximum displacement ZMAX of a beam P subroutine ZMAXZ8, page 18, is called, and calls itself for each x subroutine H8Z8XX.

Private Sub H8Z8XX() (see page 15)

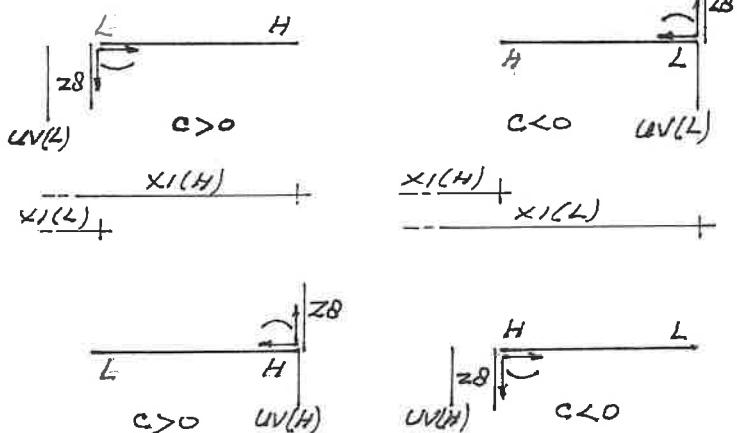
```
'Calculation of slope deflection H8
'and displacement Z8 at X meter
'from the left.
```

L1=L11(P) and after that follows

H8=0 : Z8=STZ8

The displacements of the beam ends L and H of a beam P are UV(L) and UV(H) with the assumed direction downward.

STZ8 as start value for Z8 for H8Z8XX depends on the place of the beam axis system, BA(P)=L or BA(P)=H, and on the place of the beam end numbers L and H, the coordinates of L and H. The direction of the assumed displacement Z8 is that according to the perpendicular axis of the beam axis system. See the figures here below.



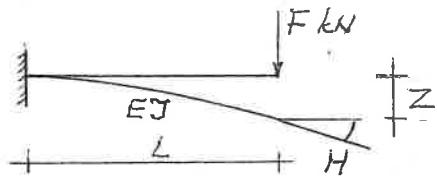
Calculation of the displacements Z8 for the elastic curve starts at the member end where the beam axis system is placed. At that beam end up to now angle H1 was determined and at the other beam end R2 and M2.

Beam ends which can displace will get a value after the main calculation. Then the value at the beam end where the beam axis system is placed must be determined, that is STZ8, Z8=STZ8. D1=X1(H)-X1(L), L1=Sqr(D1^2) and C=D1/L1.

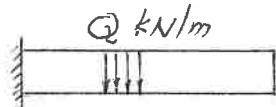
If BA(P)=L then the start value of Z8 is STZ8=UV(L)*C,
if X1(H)>X1(L) then D1>0, so C=D1/L1= 1>0,
STZ8=UV(L)*1= UV(L) and
if X1(H)<X1(L) then D1<0, so C=D1/L1=-1<0,
STZ8=UV(L)*(-1)=-UV(L), both correct.

If BA(P)=H then is STZ8=-UV(H)*C,

if X1(H)>X1(L) then D1>0, then C=1>0, and
STZ8=-UV(H)*1=-UV(H), and
if X1(H)<X1(L) then D1<0, then C=-1<0, and
STZ8=-UV(H)*(-1)= UV(H), again both correct
like the second two pictures show.

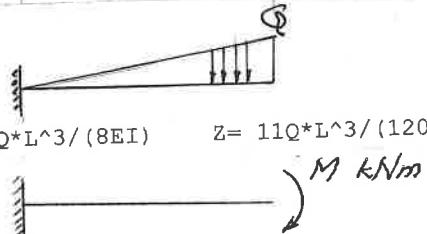


$$H = F \cdot L^2 / (2 \cdot EI) \quad Z = F \cdot L^3 / (3 \cdot EI)$$

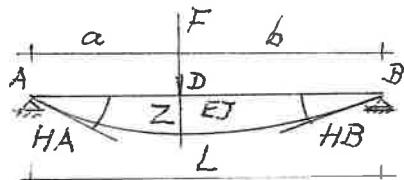


$$H = Q \cdot L^3 / (6 \cdot EI) \quad Z = Q \cdot L^4 / (8 \cdot EI)$$

$$H = Q \cdot L^3 / (24 \cdot EI) \quad Z = Q \cdot L^4 / (30 \cdot EI)$$



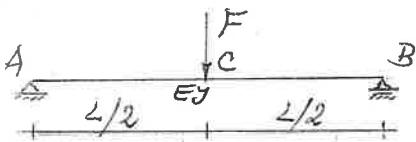
$$H = Q \cdot L^3 / (8 \cdot EI) \quad Z = 11Q \cdot L^3 / (120 \cdot EI)$$



$$HA = F \cdot a \cdot b \cdot (L+b) / (6 \cdot L \cdot EI)$$

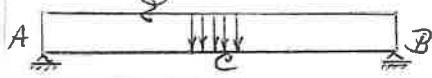
$$HB = F \cdot a \cdot b \cdot (L+a) / (6 \cdot L \cdot EI)$$

$$ZD = F \cdot a^2 \cdot b^2 / (3 \cdot L \cdot EI)$$



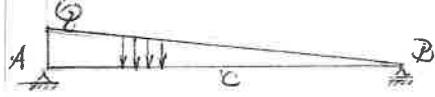
$$HA = HB = F \cdot L^2 / (16 \cdot EI)$$

$$ZC = F \cdot L^3 / (48 \cdot EI)$$



$$HA = HB = Q \cdot L^3 / (24 \cdot EI)$$

$$ZC = 5 \cdot Q \cdot L^4 / (384 \cdot EI)$$



$$HA = Q \cdot L^3 / (45 \cdot EI)$$

$$HB = 7 \cdot Q \cdot L^3 / (360 \cdot EI)$$

$$ZC = (5 \cdot Q \cdot L^4 / (384 \cdot EI)) / 2$$

Standard formulas for simple beams.

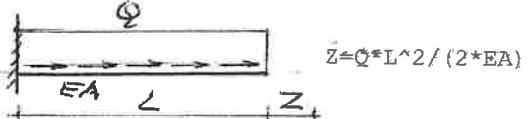
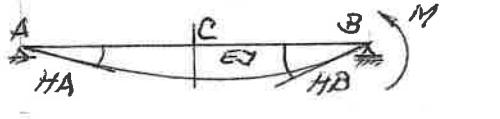
E is modulus of elasticity in kN/m²
EI is bending stiffness, EI is E*I with
I is moment of inertia in m⁴

EI is (kN/m²) * m⁴ is kNm²

EA is strain stiffness, EA is E*A with
A is cross sectional area in m²

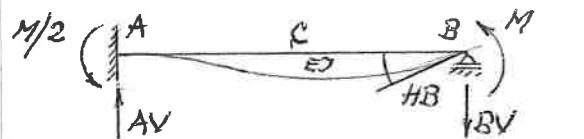
EA is (kN/m²) * m² is kN

Displacement Z in m, angle H in radians



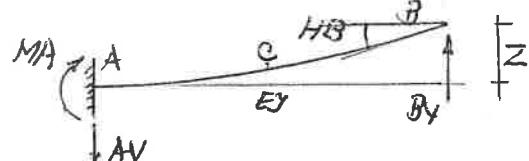
$$HA = M \cdot L / (6 \cdot EI) \quad HB = M \cdot L / (3 \cdot EI)$$

$$ZC = M \cdot L^2 / (16 \cdot EI)$$



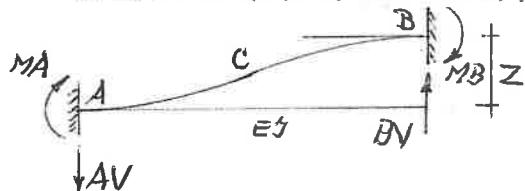
$$HB = M \cdot L / (4 \cdot EI) \quad ZC = M \cdot L^2 / (32 \cdot EI)$$

$$AV = BV = 3 \cdot M / (2 \cdot EI)$$



$$MA = 3 \cdot EI \cdot Z / (L^2) \quad HB = 3 \cdot Z / (2 \cdot L)$$

$$AV = BV = 3 \cdot EI \cdot Z / (L^3) \quad ZC = M \cdot L^2 / (32 \cdot EI)$$



$$MA = MB = 6 \cdot EI \cdot Z / (L^2) \quad ZC = Z / 2$$

$$AV = BV = 12 \cdot EI \cdot Z / (L^3)$$

```

Private Sub CBEAMMAINCALC()
  '1. Composition of construction
  'matrix CC with member
  'matrices S5.
  CONSTRMATCCCBEAM
  '2. Elements of force vector FF.
  '2a. Joint load forces FY(I) and
  'joint load moments MZ(I).
  N=2*N9
  For I=1 To N9
    A=2*I-1 : B=2*I
    FF(A)=FY(I) : FF(B)=MZ(I)
    PP(A)=PV(I) : PP(B)=PR(I)
    UU(A)=UV(I) : UU(B)=UR(I)
    SS(A)=SV(I) : SS(B)=SR(I)
  Next I

  '2b. Primary forces and moments
  'due to member loads perpendicular
  'to the member axis.
  For P=1 To P9 : L=LL(P) : H=HH(P)
  EI=EII(P)
  D1=X1(H)-X1(L)
  L1=Sqr(D1^2)
  If LE(P)=1 And RE(P)=1 Then
    M1=0 : M2=0
    BEAM1
  ElseIf LE(P)=1 Or RE(P)=1 Then
    M1=0 : M2=0 : M3=0 : M4=0
    BEAM2
  ElseIf LE(P)=0 And RE(P)=0 Then
    BEAM3
  End If
  'primary moments and forces
  M11(P)=M1 : R11(P)=R1
  M22(P)=M2 : R22(P)=R2

  C=D1/L1
  If BA(P)=L Then
    D4(P,1)=R1*C : D4(P,2)=R2*C
    MP(P,1)=M1 : MP(P,2)=-M2
    HE(P,1)=H1 : HE(P,2)=H2
  Else If BA(P)=H Then
    D4(P,1)=-R2*C : D4(P,2)=-R1*C
    MP(P,1)=-M2 : MP(P,2)=M1
    HE(P,1)=H2 : HE(P,2)=H1
  End If
  Next P

  '2c Alteration of force vector FF.
  For I=1 To N9
    A=2*I-1 : B=2*I
    For P=1 To P9 : L=LL(P) : H=HH(P)
    If I <=L Then
      FF(A)=FF(A)+D4(P,1)
      FF(B)=FF(B)+MP(P,1)
    Else If I=H Then
      FF(A)=FF(A)+D4(P,2)
      FF(B)=FF(B)+MP(P,2)
    End If
    Next P
  Next I

  '3 Alteration of force vector FF
  'and construction matrix CC.
  '3a Of FF in case of prescribed
  'displacements <>0.

```

```

  For I=1 To N
    If UU(I)<>0 Then
      For K=1 To N
        FF(K)=FF(K)-CC(K,I)*UU(I)
      Next K
    End If
  Next I

  '3b. Of FF and CC in case of pres-
  'cribed displacements.
  For I=1 To N
    If PP(I)=1 Then
      For J=1 To N
        CC(I,J)=0 : CC(J,I)=0
      Next J
      CC(I,I)=1 : FF(I)=UU(I)
    End If
  Next I

  '3c. Of FF and CC if the joint is
  'a hinge.
  For I=1 To N
    If CC(I,I)=0 Then CC(I,I)=1
    FF(I)=0
  Next I

  '3d. Of CC in case of springy/
  'elastic supports.
  For I=1 To N
    If SS(I)>0 Then
      CC(I,I)=CC(I,I)+SS(I)
    End If
  Next I

  '4. Calculation of the unknown
  'displacements UV(I) and UR(I).
  For I=1 To N : BB(I)=FF(I)
  For J=1 To N
    AA(I,J)=CC(I,J)
  Next J
  Next I      A x = b is C u = f

  'The solution of N=2*N9
  'equations.
  GAUSS
  For I=1 To N9
    A=2*I-1 : B=2*I
    UV(I)=XX(A) : UR(I)=XX(B)
    UU(A)=XX(A) : UU(B)=XX(B)
  Next I

  '4b. Slope deflections separately
  'calculated in case of hingy mem-
  'ber ends.
  For P=1 To P9 : L=LL(P) : H=HH(P)
  D1=X1(H)-X1(L)
  L1=Sqr(D1^2)

  ZL=UV(L) : ZH=UR(H) H6=(ZH-ZL)/L1
  H7=1.5*(ZH-ZL)/L1

  If NL(P)=1 And NH(P)=1 Then
    If D1>0 Then
      HE(P,1)=HE(P,1)+H6 : _
      HE(P,2)=HE(P,2)+H6
    If D1<0 Then
      HE(P,1)=HE(P,1)-H6 : _
      HE(P,2)=HE(P,2)-H6

```

```

ElseIf NL(P)=1 Then
If D1>0 Then
HE(P,1)=HE(P,1)+H7-0.5*UR(H)
If D1<0 Then
HE(P,1)=HE(P,1)-H7-0.5*UR(H)

ElseIf NH(P)=1 Then
If D1>0 Then
HE(P,2)=HE(P,2)+H7-0.5*UR(L)
If D1<0 Then
HE(P,2)=HE(P,2)-H7-0.5*UR(L)
End If
Next P

'5. Calculation of the member end
'forces w.r.t. the construction
'axes system X-Y.
'5a. Due to the displacements
'alone.
For P=1 To P9 : L=LL(P) : H=HH(P)
EI=EII(P)
MEMBERMATS5CBEAM
TT(1)=2*L-1 : TT(2)=2*L
TT(3)=2*H-1 : TT(4)=2*H
For I=1 To 4 : FK(P,I)=0
For J=1 To 4 : A=TT(J)
FK(P,I)=FK(P,I)+S5(I,J)*UU(A)
Next J
Next I

'5b. Due to displacements and
'member/beam loads perpendicular
'to the member/beam axis..
D6(P,1)=FK(P,1)-D4(P,1)
MF(P,1)=FK(P,2)-MP(P,1)
D6(P,2)=FK(P,3)-D4(P,2)
MF(P,2)=FK(P,4)-MP(P,2)
Next P

'6. Calculation of the joint 'for-
'ces' KV(I) and KM(I).
'6a. Due to the displacements
'alone.
CONSTRMATICCCBEAM
For I=1 To N9
A=2*I-1 : B=2*I
KV(I)=0 : KM(I)=0
For J=1 To N
KV(I)=KV(I)+CC(A,J)*UU(J)
KM(I)=KM(I)+CC(B,J)*UU(J)
Next J

'6b. Due to displacements and
'member loads perpendicular to the
'member axis.
For P=1 To P9 : L=LL(P) : H=HH(P)
If I=L Then
KV(I)=KV(I)-D4(P,1)
KM(I)=KM(I)-MP(P,1)
Else If I=H Then
KV(I)=KV(I)-D4(P,2)
KM(I)=KM(I)-MP(P,2)
End If
Next P
Next I

```

```

Private Sub MEMBERMATS5CBEAM()
D1=X1(H)-X1(L)
L1=Sqr(D1^2).
If NL(P)=0 And NH(P)=0 Then
A=12*EI/L1^3 : B=6*EI/L1^2
D=4*EI/L1 : E=2*EI/L1
If D1<0 Then B=-B
FILLINGS5CBEAM

ElseIf NL(P)=1 And NH(P)=1 Then
A=0 : B=0 : D=0 : E=0
FILLINGS5CBEAM

Else If NL(P)=1 Or NH(P)=1 Then
A=3*EI/L1^3 : B=3*EI/L1^2
D=3*EI/L1

If NL(P)=1 Then
If D1<0 Then B=-B
FILLINGS5CBEAM
For I=1 To 4
S5(2,I)=0 : S5(I,2)=0
Next I

ElseIf NH(P)=1 Then
If D1<0 Then B=-B
FILLINGS5CBEAM
For I=1 To 4
S5(4,I)=0 : S5(I,4)=0
Next I
End If
End If

End Sub

Private Sub FILLINGS5CBEAM
'Row 1 of S5.
S5(1,1)=A : S5(1,2)=B : S5(1,3)=-A
S5(1,4)=B
'Row 2.
S5(2,1)=B : S5(2,2)=D : S5(2,3)=-B
S5(2,4)=E
'Row 3.
S5(3,1)=-A : S5(3,2)=-B
S5(3,3)=A : S5(3,4)=-B
'Row 4.
S5(4,1)=B : S5(4,2)=E : S5(4,3)=-B
S5(4,4)=D
End Sub

'7. Calculation of the reactions.
For I=1 To N9
If SV(I)>0 Then
RV(I)=SV(I)*UV(I)
Else
RV(I)=-KV(I)+FY(I)
End If
If SR(I)>0 Then
RM(I)=SR(I)*UR(I)
Else
RM(I)=-KM(I)+MZ(I)
End If
Next I

End Sub

```

```

Private Sub CONSTRMATCCCBEAM
N=2*N9
For I=1 To N : For J=1 To N
CC(I,J)=0 : Next J : Next I
For P=1 To P9 : L=LL(P) : H=HH(P)
EI=EI(P)
MEMBERMATS5CBEAM
TT(1)=2*L-1 : TT(2)=2*L
TT(3)=2*H-1 : TT(4)=2*H
For I=1 To 4 : I1=TT(I)
For J=1 To 4 : J1=TT(J)
CC(I1,J1)=CC(I1,J1)+S5(I,J)
Next J
Next I
Next P
End Sub

```

```

Private Sub BEAM1()
'The statically determinate beam on
'two supports, the simple beam.
'Calculation of the support reac-
'tions and the slopes at the beam
'ends.
R1=0 : R2=0 : H1=0 : H2=0
'The concentrated loads.
For I= 1 To NFB(P)
F2=F22(P,I) : L2=L22(P,I)
R4=F2*L2/L1 : R3=F2-R4
R1=R1+R3 : R2=R2+R4
H5=F2*L2^2/(2*EI)
Z1=F2*L2^3/(3*EI)+H5*(L1-L2)
Z2=R4*L1^3/(3*EI)
H3=(Z2-Z1)/L1 : H8=R4*L1^2/(2*EI)
H4=H3+H5-H8
H1=H1+H3 : H2=H2+H4
Next I
'The distributed loads.
For I=1 to NQT(P)
Q3=Q33(P,I) : Q4=Q44(P,I)
L3=L33(P,I) : L4=L44(P,I)
L5=L1-L3-L4
QLOAD
R4=T*(L3+A1)/L1 : R3=T-R4
R1=R1+R3 : R2=R2+R4
Z2=R4*L1^3/(3*EI)
H3=(Z2-Z1)/L1 : H8=R4*L1^2/(2*EI)
H4=H3+H7-H8
H1=H1+H3 : H2=H2+H4
Next I
'The beam end moments M1 and M2.
R4=(M2-M1)/L1 : R3=-R4
R1=R1+R3 : R2=R2+R4
H3=-M1*L1/(3*EI)-M2*L1/(6*EI)
H4=M1*L1/(6*EI)+M2*L1/(3*EI)
H1=H1+H3 : H2=H2+H4
End Sub

```

```

Private Sub QLOAD()
'The statically determinate on the
'left clamped beam with trapeze
'like distributed load.
T=0.5*(Q3+Q4)*L4
B1=(2*Q3+Q4)*L4/(3*(Q3+Q4))
A1=L4-B1 : M=T*A1

```

```

Private Sub BEAM2()
'The onefold statically indetermi-
'nate beam on two supports.
'Calculation of the reactions and
'the slope at the not clamped beam-
'end.
R1=0 : R2=0
H1=0 : H2=0
For I=1 To NFB(P)
F2=F22(P,I) : L2=L22(P,I)
If LE(P)=1 Then L2=L1-L2
H5=F2*L2^2/(2*EI)
Z1=F2*L2^3/(3*EI)+H5*(L1-L2)
R4=Z1*(3*EI)/(L1^3)
M3=F2*L2-R4*L1 : R3=F2-R4
R1=R1+R3 : R2=R2+R4 : M1=M1+M3
H8=R4*L1^2/(2*EI)
H4=H5-H8 : H2=H2+H4
Next I
'The distributed loads.
For I=1 To NQB(P)
Q3=Q33(P,I) : L3=L33(P,I)
Q4=Q44(P,I) : L4=L44(P,I)
L5=L1-L3-L4
If LE(P)=1 Then
Q3=Q4 : Q4=Q33(P,I) : L3=L1-L3-L4
L5=L1-L3-L4
End If
QLOAD
R4=Z1*(3*EI)/L1^3
M3=T*(L3+A1)-R4*L1 : R3=T-R4
R1=R1+R3 : R2=R2+R4 : M1=M1+M3
H8=R4*L1^2/(2*EI)
H4=H7-H8 : H2=H2+H4
Next I
If LE(P)=1 Then
R=R1 : R1=R2 : R2=R : M2=M1 : M1=0
H1=-H2 : H2=0
End If
If LE(P)=0 Then
R3=-1.5*M4/L1 : R4=1.5*M4/L1
M3=-M4/2 : H4=M4*L1/(4*EI)
R1=R1+R3 : R2=R2+R4 : M1=M1+M3
M2=M4 : H2=H2+H4
ElseIf LE(P)=1 Then
R3=1.5*M4/L1 : R4=-1.5*M4/L1
M3=-M4/2 : H4=M4*L1/(4*EI)
R1=R1+R3 : R2=R2+R4 : M2=M2+M3
M1=M4 : H1=H1-H4
End If
End Sub

```

```

Z5=T*L3^3/(3*EI)+M*L3^2/(2*EI)
H5=T*L3^2/(2*EI)+M*L3/EI
Z6=Q4*L4^4/(8*EI)
Z6=Z6-(Q4-Q3)*L4^4/(30*EI)
H6=Q4*L4^3/(6*EI)
H6=H6-(Q4-Q3)*L4^3/(24*EI)
H7=H5+H6 : Z7=Z5+H5*L4+Z6
Z1=Z7+H7*L5
End Sub

```

```

Private Sub BEAM3()
'The twofold statically indeterminate beam on two supports
'Calculation of the reactions.
R1=0 : R2=0 : M1=0 : M2=0
H1=0 : H2=0
'The concentrated loads.
For I=1 To NFB(P)
F2=F22(P,I) : L2=L22(P,I)
H5=F2*L2^2/(2*EI)
Z1=F2*L2^3/(3*EI)+H5*(L1-L2)
A=L1^3/(3*EI) : B=-L1^2/(2*EI)
C=Z1
D=L1^2/(2*EI) : E=-L1/EI : F=H5
TWOEQUATIONS
M3=F2*L2-R4*L1+M4 : R3=F2-R4
R1=R1+R3 : R2=R2+R4
M1=M1+M3 : M2=M2+M4
Next I
'The distributed loads.
For I=1 To NQB(P)
Q3=Q33(P,I) : L3=L33(P,I)
Q4=Q44(P,I) : L4=L44(P,I)
L5=L1-L3-L4
QLOAD
A=L1^3/(3*EI) : B=-L1^2/(2*EI)
C=Z1
D=L1^2/(2*EI) : E=-L1/EI : F=H7
TWOEQUATIONS
M3=T*(L3+A1)-R4*L1+M4 : R3=T-R4
R1=R1+R3 : R2=R2+R4
M1=M1+M3 : M2=M2+M4
Next I
End Sub

```

```

Private Sub TWOEQUATIONS()
R4=(C-B*(C*D-A*F)/(D*B-A*E))/A
M4=(C*D-A*F)/(D*B-A*E)
End Sub

```

```

Private Sub T5M5XX()
'Calculation of transverse force T5
'and T7, and bending moment M5 at
'X meter from the 'left'
L1=L11(P)
T5=0 : T7=0 : M5=0
'The concentrated loads.
For I=1 TO NFB(P)
F2=F22(P,I) : L2=L22(P,I)
R3=F2*(L1-L2)/L1
If X<=L2 Then
T6=R3 : M6=R3*X
ElseIf X>L2 Then
T6=R3-F2 : M6=R3*X-F2*(X-L2)
End If
T5=T5+T6 : T7=T7+T6 : M5=M5+M6
If X=L2 Then
T7=T5-F2
End If
Next I

```

```

Private Sub T5M5X()
'Calculation of transverse force
'T5 and T7, and bending moment M5
'at X meter from the 'left'.
L1=L11(P)
T5=R1 : T7=R1 : M5=-M1
M5=M5+R1*X
'The concentrated loads.
For I=1 To NFB(P)
F2=F22(P,I) : L2=L22(P,I)
If X>L2 Then
T5=T5-F2 : T7=T7-F2
M5=M5-F2*(X-L2)
ElseIf X=L2 Then
T7=T7-F2
ElseIf X<L2 Then
Exit For
End If
Next I
'The distributed loads.
For I=1 To NQB(P)
Q3=Q33(P,I) : L3=L33(P,I)
Q4=Q44(P,I) : L4=L44(P,I)
If X>L3 Then
If X>L3 And X<=L3+L4 Then
Q5=Q3+(Q4-Q3)*(X-L3)/L4
T=0.5*(Q3+Q5)*(X-L3)
B1=(2*Q3+Q5)*(X-L3)/(3*(Q3+Q5))
T5=T5-T : T7=T7-T
M5=M5-T*B1
ElseIf X>L3+L4 Then
T=0.5*(Q3+Q4)*L4
B1=(2*Q3+Q4)*L4/(3*(Q3+Q4))
T5=T5-T : T7=T7-T
M5=M5-T*(B1+(X-L3-L4))
End If
End If
Next I
End Sub

```

```

'The distributed loads.
For I=1 To NQB(P)
Q3=Q33(P,I) : L3=L33(P,I)
Q4=Q44(P,I) : L4=L44(P,I)
QLOAD
R3=T*(B1+(L1-L3-L4))/L1
If X<=L3 Then
T6=R3 : M6=R3*X
Else If X>L3 And X<=L3+L4 Then
Q5=Q3+(Q4-Q3)*(X-L3)/L4
Q4=Q5 : L4=X-L3
QLOAD
T6=R3-T : M6=R3*X-T*B1
Else If X>L3+L4 Then
QLOAD
T6=R3-T : M6=R3*X-T*(X-L3-L4+B1)
End If
T5=T5+T6 : T7=T7+T6 : M5=M5+M6
Next I
'The member end moments M1 and M2.
R3=(M1-M2)/L1
T6=R3 : M6=R3*X-M1
T5=T5+T6 : T7=T7+T6 : M5=M5+M6
End Sub

```

```

Private Sub H8Z8XX()
'Calculation of slope deflection H8
'and displacement Z8 at X meter
'from the left.

L1=L11(P)
H8=0 : Z8=0

'Due to angle H1.
H9=H1 : Z9=H1*X

'Due to the reaction R2.
M=R2*(L1-X)
H4=R2*X^2/(2*EI)+M*X/EI
Z4=R2*X^3/(3*EI)+M*X^2/(2*EI)
H3=H3+H9-H4 : Z3=Z3+Z9-Z4

'The concentrated loads..
For I=1 To NFB(P)
F2=F22(P,I) : L2=L22(P,I)
If X<=L2 Then
M=F2*(L2-X)
H9=F2*X^2/(2*EI)+M*X/EI
Z9=F2*X^3/(3*EI)+M*X^2/(2*EI)
ElseIf X>L2 Then
H9=F2*L2^2/(2*EI)
Z9=F2*L2^3/(3*EI)+H9*(X-L2)
End If
H8=H8+H9 : Z8=Z8+Z9
Next I

'The distributed loads.
For I=1 To NQB(P)
Q3=Q33(P,I) : L3=L33(P,I)
Q4=Q44(P,I) : L4=L44(P,I)
If X<=L3 Then
QLOAD page
M=T*(L3-X+A1)
H9=T*X^2/(2*EI)+M*X/EI
Z9=T*X^3/(3*EI)+M*X^2/(2*EI)
ElseIf X>L3 And X<L3+L4 Then
Q5=Q3+(Q4-Q3)*(X-L3)/L4
Q4=Q5 : L4=X-L3
QLOAD
H9=H7 : Z9=Z7
Q4=Q44(P,I) : L4=L44(P,I)
Q3=Q5 : L4=L3+L4-X
QLOAD
M=T*A1
H4=T*X^2/(2*EI)+M*X/EI
Z4=T*X^3/(3*EI)+M*X^2/(2*EI)
H9=H9+H4 : Z9=Z9+Z4
ElseIf X>=L3+L4 Then
L5=X-L3-L4
QLOAD
H9=H7 : Z9=Z1
End If
H8=H8+H9 : Z8=Z8+Z9
Next I
'The member end moment M2.
H9=M2*X/EI : Z9=M2*X^2/(2*EI)
H8=H8+H9 : Z8=Z8+Z9
'Member end displacements.
H9=(REZ-LEZ)/L1
Z9=LEZ+(REZ-LEZ)*X/L1
H8=H8+H9 : Z8=Z8+Z9
End Sub

```

```

Private Sub T5M5G()
NB=0 : L1=L11(P)
For XG=0 To L1+G Step G
If XG=0 Then
X=XG : T5M5XX
T5M5

ElseIf XG>0 And XG<L1 Then
For I1=1 To NFB(P) : L2=L22(P,I1)
If L2>XG-G And L2<XG Then
X=L2 : T5M5XX
T5M5
End If
Next I1
X=XG : T5M5XX
T5M5

ElseIf XG>=L1 And XG<L1+G Then
For I1=1 To NFB(P) : L2=L22(P,I1)
If L2>XG-G Then
X=L2 : T5M5XX
T5M5
End If
Next I1
X=L1 : T5M5XX
T5M5
End If
Next XG : NBC(P)=NB
End Sub

```

```

Private Sub T5M5()
NB=NB+1 : LB(P,NB)=X
NBL(P,NB)=T5 : NBR(P,NB)=T7
NBM(P,NB)=M5
End Sub

```

```

Private Sub H8Z8G()
NC=0 : L1=L11(P)
For XG=0 To L1+G Step G
If XG=0 Then
X=XG : H8Z8XX
H8Z8

ElseIf XG>0 And XG<L1 Then
For I1=1 To NFB(P) : L2=L22(P,I1)
If L2>XG-G And L2<XG Then
X=L2 : H8Z8XX
H8Z8
End If
Next I1 : X=XG : H8Z8XX
H8Z8

ElseIf XG>=L1 And XG<L1+G Then
For I1=1 To NFB(P) : L2=L22(P,I1)
If L2>XG-G Then
X=L2 : H8Z8XX
H8Z8
End If
Next I1 : X=L1 : H8Z8XX
H8Z8
End If
Next XG : NCC(P)=NC
End Sub

```

```

Private Sub H8Z8()
NC=NC+1 : LC(P,NC)=X
NH8(P,NC)=H8 : NZ8(P,NC)=Z8
End Sub

```

```

Private Sub MMAXM5()
'Calculation of the largest bending moment and the moment zero
'points.
NM=0 : L1=L11(P)
For X=0 To L1+0.01 Step 0.01
T5M5XX

If X=0 Then
M7=M5 : T3=T5
NM=NM+1
MMAXX(P,NM)=M5 : LM(P,NM)=X

ElseIf X>0 And X<L1 Then

If M5>=0 And M7<0 Or
M5<=0 And M7>0 Then
NM=NM+1
MMAXX(P,NM)=M5 : LM(P,NM)=X
End If
M7=M5

If T3<=0 And T5>0 Or
T5>=0 And T3<0 Then
NM=NM+1
MMAXX(P,NM)=M5 : LM(P,NM)=X
End If
T3=T5

ElseIf X>=L1 Then
X=L1 : T5M5XX
NM=NM+1
MMAXX(P,NM)=M5 : LM(P,NM)=X
End If

Next X
End Sub

```

```

Private Sub ZMAXZ8()
'Calculation of the largest displacement/bending and the bending zero points.
NZ=0 : L1=L11(P) : EI=EII(P)
For X=0 To L1+0.01 Step 0.01
H8Z8XX      page /5

If X=0 Then
Z3=Z8 : H3=H8 : NZ=NZ+1
ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X

ElseIf X>0 And X<L1 Then

If Z8<=0 And Z3>0 Or
Z8>=0 And Z3<0 Then
NZ=NZ+1
ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X
End If
Z3=Z8

If H8<=0 And H3>0 Or
H8>=0 And H3<0 Then
NZ=NZ+1
ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X
End If
H3=H8

```

```

Private Sub LINEXAYAXBYB()
If PRP=0 Then
Line (XA, YA)-(XB, YB)
ElseIf PRP=1 Then
Printer.Line (XA, YA)-(XB, YB)
End If
End Sub

ElseIf X>=L1 Then
X=L1 : H8Z8XX
NZ=NZ+1
ZMAXX(P,NZ)=Z8 : LZ(P,NZ)=X
Exit For
End If

Next X

ZMAX=0
For I=1 To NZ
If Abs(ZMAXX(P,I))>Abs(ZMAX) Then
ZMAX=ZMAXX(P,NZ) : X=LZ(P,I)
End If
Next I
NZ=NZ+1
ZMAXX(P,NZ)=ZMAX : LZ(P,NZ)=X
NZZ(P)=NZ

End Sub

```